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• Latent-variable model 

• “Easy to optimise” variational lower bound based on importance sampling:


• A more accurate MC estimate           should (?) lead to a tighter variational bound


• But what does “more accurate” means? 

• Do variance-reduction techniques lead to tighter bounds?

Motivation: Importance-Weighted Autoencoders 
(IWAEs) aka Monte Carlo objectives 

Burda, Grosse, and Salakhutdinov, Importance Weighted Autencoders, ICLR 2016
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provably tightens variational bounds. Our result is quite
simple and based on a stronger notion of dependence than
covariance: the supermodular order.

2. Variational inference using Monte Carlo

objectives

2.1. Inference via Monte Carlo objectives

We consider some data x 2 X governed by a latent variable
z 2 Z through a model with density

p(x, z) = p(z)p(x|z), (1)

with respect to a dominating measure on X ⇥ Z . Typically,
the latent variable models we focus on depend on many
parameters that we would like to learn via (potentially ap-
proximate) maximum likelihood. Since z is hidden and only
x is observed, the log-likelihood (or log-marginal likelihood
if the model is Bayesian) is equal to

` = log p(x) = log

Z

Z
p(x|z)p(z)dz. (2)

A fruitful idea to approach ` is to replace the typically in-
tractable integral p(x) inside the logarithm by a Monte Carlo
estimate of it. Of particular interest are unbiased estimates,
since they lead to lower bounds of the likelihood `. Indeed,
if R is a random variable such that R > 0 and E[R] = p(x),
then the quantity L = E[log R] is a lower bound of the

likelihood `, by virtue of Jensen’s inequality and the con-
cavity of the logarithm. Moreover, the fact that, in L, the
expectation is now located outside of the logarithm means
that L is more suited for stochastic optimisation techniques.
The lower bound L is called a Monte Carlo objective

(MCO), and is maximised in lieu of the likelihood.

In this paper, we will study in particular importance sam-
pling estimates of the form

RK =
1

K

KX

k=1

p(x|zk)p(zk)

q(zk|x)
, (3)

where z1, . . . , zK follow a proposal distribution

q(z1, . . . , zK |x) that usually is a function of the data x
(e.g. via a neural network, as in VAEs). The corresponding
MCO is then LK = E[log RK ], which may be optimised
using stochastic optimisation.

2.2. General setting and notations

We consider a potentially infinite sequence of positive
random variables w = (wk)k2K with common mean
µ > 0. This sequence, called the sequence of impor-

tance weights, is indexed by K = {1, . . . , Kmax}, where
Kmax 2 N⇤ [ {1}. The joint distribution of w is denoted
by Q.

The Monte Carlo estimate of µ > 0 is RK = SK/K, where
SK = w1+ . . .+wK and K 2 K. The sequence of Monte

Carlo objectives L(Q) = (LK(Q))K2K, is defined by

LK(Q) = EQ

"
log

 
1

K

KX

k=1

wk

!#
(4)

= EQ [RK ] = EQ [log SK ] � log K. (5)

It is possible to be slightly more general by replacing the
uniform coefficients 1/K, . . . , 1/K by a vector ↵ in the
K-simplex �K . This leads to

L↵(Q) = EQ

⇥
log
�
↵Tw

�⇤
= EQ

"
log

 
KX

k=1

↵kwk

!#
.

(6)
In particular L(1/K,...,1/K)(Q) = LK(Q). Jensen’s inequal-
ity ensures that L↵(Q)  log µ. Note, however, that it is
possible to have L↵(Q) = �1 (we will show an example
of this in the next section).

In the context of LVMs, µ = p(x); w is the sequence of im-
portance weights; for all K 2 K and RK is the importance
sampling estimate of the likelihood p(x), as in Equation (3).
The non-uniform version L↵ corresponds to using multiple

importance sampling.

We believe that this general simple framework covers most
ways of defining importance-sampling based MCOs, from
the original ones of Burda et al. (2016), corresponding to
i.i.d. weights with uniform coefficients, to the more elab-
orated ones of Huang et al. (2019), where the weights are
correlated and not identically distributed.

3. Variance reduction as a heuristic towards

tighter bounds

3.1. The variance heuristic

At its simplest level, what we call the variance heuris-

tic may be informally formulated like this: in a MCO,

if Var(R) gets smaller, then R is a more accurate esti-

mate of E[R] = µ, and the variational bound E[log R]
gets tighter. It is possible to be more formal by Taylor-
expanding the logarithm of R around µ:

log(R) = log(µ) +
R � µ

µ
+

(R � µ)2

2µ2
+ Rem(R). (7)

The Taylor remainder Rem(R) may be for example written
exactly using its integral form. Then, assuming that Var(R)
is finite, computing the expectation leads to

E[log(R)] = log(µ) +
Var(R)

2µ2
+ E[Rem(R)]. (8)

LK = E
"
log

 
1

K

KX

k=1

wk

!#
 log p(x), with wk =

p(x|zk)p(zk)
q(zk|x)
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• There are two “simple” ways to reduce the variance of 


Increase K, which provably tightens the bound (Burda et al., 
2016) and works wonders in practice


Use negatively dependent weigths wk which was explored 
recently by Huang et al. (2019), Ren et al. (2019), and Wu et al. 
(2019). It works very well in practice but lacks non-
asymptotic theoretical justification. 


Warning: variance reduction           tighter bound in general!

Do variance-reduction techniques leads to tighter 
bounds? 

Burda, Grosse, and Salakhutdinov, Importance Weighted Autencoders, ICLR 2016

Huang, Sankaran, Dhekane, Lacoste, and Courville, Hierarchical Importance Weighted Autencoders ICML 2019

Ren, Zhao, and Ermon, Adaptive Antithetic Sampling for Variance Reduction, ICML 2019

Wu, Goodman, and Ermon, Differentiable Antithetic Sampling for Variance Reduction in Stochastic Variational Inference, AISTATS 2019
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• We show, in a precise sense, that the more negatively dependent the weights, 
the tighter the bound 

• We quantify negative dependence using the notion of supermodular order  �SM
<latexit sha1_base64="awZ2BcKGT9NyY+gmVVSpB876sdc="></latexit>

Negative variance tightens variational bounds 

Negative Dependence Tightens Importance Weighted Variational Bounds

based on the fact that

Var(↵Tw) =
KX

k=1

↵2
kVar(wk)

+ 2
X

1k<k0K

↵k↵k0Cov(wk, wk0), (10)

which means that negative covariances in the right hand side
of Equation (10) will lead to a smaller variance of ↵Tw.
Anthitetic sampling is for example a famous variance re-
duction technique based on this idea (see e.g. Owen, 2013,
Section 8.2).

Variants of this rationale were used successfully in the MCO
context by Klys et al. (2018), Huang et al. (2019), Ren et al.
(2019), Wu et al. (2019), and Domke & Sheldon (2019).
Their motivations were essentially based on variants of the
variance heuristic: since negative dependence can reduce
the variance, it might also improve the bound. Our goal here
is to prove that negative dependence can indeed tighten the
bound, giving hereby a non-asymptotic theoretical justifica-
tion for the works aforementioned.

Let w ⇠ Q1 and v ⇠ Q2 be two K-dimensional ran-
dom variables with identical marginals, i.e. wk

d
= vk for

all k 2 {1, . . . , K}. What mathematical sense could we
give to the sentence “the coordinates of w are more neg-

atively dependent than those of v”? Again, stochastic
orders provide good tools for assessing this. Indeed, the
idea of dependence orders is to define binary relations �
between distributions such that Q1 � Q2 means that, in
some sense, the coordinates of w ⇠ Q1 are more negatively
dependent that those of v ⇠ Q2. A detailed overview of
these dependence-based stochastic orders may be found in
Shaked & Shanthikumar (2007, Chapter 9). A prominent
example is the supermodular order.
Definition 1. A function � : RK ! R is supermodular if,

for all x,y 2 RK
,

�(min(x,y)) + �(max(x,y)) � �(x) + �(y), (11)

with min and max functions applied elementwise.

Let Q1 and Q2 be two probability distributions over RK
.

We say that Q1 is smaller than Q2 in the supermodular
order when

EQ1 [�(w)]  EQ2 [�(v)]

for all supermodular functions � such that the involved

expectations exist. We denote Q1 �SM Q2.

The supermodular order is one of the most popular stochas-
tic orders when it comes to quantify dependence (see
e.g. Müller & Scarsini, 2000; Shaked & Shanthikumar, 2007,
Chapter 9), notably in the economics and insurance litera-
ture (see e.g. Müller, 1997; Meyer & Strulovici, 2012; 2015).

Joe (1997, Section 2.2.3) proposed a set of nine axioms that
would characterise good dependence orders. A few years
later, Müller & Scarsini (2000) proved that the supermodu-
lar order satisfied all of these desirable properties. Here is a
simple example of supermodular ordering: for two distribu-
tions Q1, Q2 with identical marginals, if the coordinates of
w ⇠ Q1 are negatively associated, and those of v ⇠ Q2 are
independent, then Q1 �SM Q2 (Christofides & Vaggelatou,
2004).

An important example of supermodular function is the fol-
lowing: let � be a convex function and ↵ a vector with
non-negative coefficients, then w 7! �

�
↵Tw

�
is super-

modular. Using this fact with � = � log immediately leads
to the following monotonicity theorem.
Theorem 1 (negative dependence tightens the bound).
For all pairs Q1, Q2 of probability distributions over RK

,

Q1 �SM Q2 =) L↵(Q1) � L↵(Q2).

Theorem (negative dependence tightens the bound). For

all pairs Q1, Q2 of probability distributions over RK
,

Q1 �SM Q2 =) LK(Q1) � LK(Q2).

In other words, the lower bound gets tighter when the

weights get more negatively dependent (in the supermod-
ular sense). This gives a theoretical support to the successful
recent applications of negative dependence to tighten varia-
tional bounds.

5. Conclusion

The main limitation of our result is that it is difficult to
control the supermodular order in practice. A silver lining
to this is the central role played by the supermodular order
among dependence measures. In particular, the popular
notion of negative association is in a sense stronger than
the supermodular order (for a more general result than the
simple one from Christofides & Vaggelatou, 2004 cited
above, see Shaked & Shanthikumar, 2007, Theorem 9.E.8).

An interesting question is whether or not these sorts of
investigations could provide a guide to design proposal dis-
tributions with the “right amount of correlation” required to
tighten bounds.
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