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Abstract

Submodular optimization over the integer lattice
has many applications in machine learning.
Although the constrained maximization of
submodular functions with coordinate-wise
concavity (also called DR-submodular functions)
is well studied, the maximization of general

lattice submodular functions is considerably more
challenging. In this work, we first show that we
can optimize lattice submodular functions subject
to a discrete (integer) polymatroid constraint
using a recently proposed extension, called the
Generalized Multilinear Extension. Then, we
establish a bound on the rounding error for the
discrete polymatroid constraint, which depends
on the “distance” between the lattice submodular
function to a DR-submodular function. Lastly,
we demonstrate the effectiveness of our algorithm
on a Bayesian experimental design problem with
repetition and a concave cost.

1. Introduction

Submodular functions, which are defined on the subsets
of a ground set V containing n elements, have many
applications in machine learning (Tschiatschek et al.,
2014; Boykov et al., 1999) and they can be described as
a pseudo-Boolean function defined on vertices of the unit
hypercube {0, 1}n. Recently, submodularity has been
extended to integer (Soma et al., 2014; Soma and Yoshida,
2018) domains and continuous domains (Bach, 2019).
Submodular functions over the integer lattice arise naturally,
e.g., if elements can be selected repeatedly, and have found
applications in optimal budget allocation (Soma et al.,
2014), sensor placement with different power levels (Soma
and Yoshida, 2015) and experimental design for causal
structure discovery (Agrawal et al., 2019).
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On sets, submodularity is fully characterized via a certain
diminishing returns property. However, over integer and
continuous domains, this is more subtle (Soma et al., 2014).
In particular, integer/continous submodularity makes no
restrictions on the functions’ variation along any single co-
ordinate. A natural restriction is to require coordinate-wise
concavity (diminishing returns, DR) as well. Submodular
functions with this additional diminishing returns property
are called DR-submodular (Soma and Yoshida, 2015; Bian
et al., 2017c). Maximization of such DR-submodular func-
tions subject to different constraints has been extensively
studied (Soma and Yoshida, 2018; 2017; Bian et al., 2017a;
2019; Chen et al., 2018). Ene and Nguyen (2016) provide a
polynomial time reduction technique from the integer lattice
to the set function maximization case, thus lifting existing
techniques for maximizing submodular set functions to the
DR-submodular case. Note that this reduction from the
integer to the subset lattice only works when the function
is DR-submodular. The maximization of general, non
DR-submodular (i.e., lattice submodular) functions is
considerably more challenging, and only a few constraint
settings have been studied. For example, Niazadeh et al.
(2018); Gottschalk and Peis (2015) consider box constraints,
Kuhnle et al. (2018); Soma and Yoshida (2018); Qian et al.
(2018) consider cardinality constraints, and Soma et al.
(2014) consider a single knapsack constraint.

To the best of our knowledge, maximization of lattice
submodular functions subject to richer constraints is an
open problem. In this work, we address the problem
of maximizing lattice submodular functions to a rich
family of constraints called discrete polymatroid constraint.
Our main contributions are summarized as follows: We
provide the first method to maximize lattice submodular
function subject to discrete polymatroid constraint, using
the Generalized Multilinear Extension (GME). Then, we
characterize the worst-case rounding error over the polytope
associated with the discrete polymatroid using a novel
notion of distance to a DR-submodular function.

2. Problem Setting

We consider submodular functions defined on different
subsets of Rn. A function f is submodular if 8x,y 2 X
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we have

f(x) + f(y) � f(x _ y) + f(x ^ y) (1)

where _ and ^ are component-wise maximum and
minimum functions respectively and X =

Qn
i=1

Xi, where
each Xi is a compact subset of R (Bach, 2019). From
now on, a submodular function f will be referred as
set submodular if Xi = {0, 1}, lattice submodular if
Xi = {0, 1, . . . , k � 1} and continuous submodular if
Xi = [a, b]. For set submodular functions, we define the
ground set as V with |V | = n. We use ZV to denote
{0, 1, . . . , k � 1}V and denote the ith unit vector as ei. A
function f is called monotone if for any x  y, we have
f(x)  f(y). Moreover, without loss of generality, we
assume that the function is normalized, i.e., f(0) = 0. In
particular, we make the distinction between two classes of
submodular functions below (Bian et al., 2017c; Soma and
Yoshida, 2015). We call a function f : ZV ! R

Lattice submodular (Weak DR) iff for any i 2 V , l 2 Z+,
x  y 2 ZV

f(x+ lei)� f(x) � f(y + lei)� f(y) (2)

DR-submodular (Strong DR) iff for any i 2 V , x  y 2
ZV

f(x+ ei)� f(x) � f(y + ei)� f(y) (3)

Thus, for the lattice and continuous case, submodularity is
equivalent to the Weak DR property and for the set case, it is
equivalent to Strong DR property (Soma and Yoshida, 2015;
Bian et al., 2017c).

Discrete Polymatroids

We now introduce the combinatorial object called Discrete

Polymatroids (Herzog and Hibi, 2002), which have been
used in cryptography (Farras et al., 2007; Farras and Padró,
2012), but not yet in machine learning. We will later use
discrete polymatroids as constraints. Discrete polymatroids
can be viewed as generalizations of matroids, arguably the
most common family of constraints for maximizing sub-
modular set functions. Similar to matroids, we can define
discrete polymatroids using their rank function, their inde-
pendent sets or their bases. They are very closely related
to submodular functions and polymatroids (Murota, 2003).

A discrete polymatroid defined on the ground set V is a
nonempty set M ⇢ ZV

+
which satisfies two properties: If

y 2M and x 2 ZV
+

with x  y, then we have x 2M. If
x,y 2M with |x| < |y|, then there is i 2 V with xi < yi
such that x + ei 2 M. We call a base of M a vector x
with x < y for no y 2M. The base elements also have
same cardinality, |x| = |y| where |x| =

Pn
i=1

xi. We call
B ⇢ ZV

+
the set of bases of a discrete polymatroid iff they

satisfy the following two properties. First, for every x 2 B,

their cardinality |x| is the same. Second, for x,y 2 B with
xi > yi, then there is an element j with xj < yj such that
x� ei + ej 2 B.

Examples: Now we give two examples of discrete poly-
matroids. First, we can view the cardinality constraint as a
discrete polymatroid. The set M = {x 2 ZV

+
: |x|  K}

is a discrete polymatroid with base vectors B = {y 2 ZV
+
:

|y| = K}. Second, we can generalize the partition ma-
troid to the integer vectors. When we divide the ground
set into J disjoint parts and have cardinality constraint on
these parts, this structure is a discrete polymatroid, namely
M = {x 2 ZV

+
: |xSj |  bj for all j = 1, . . . , J} where

Sj are disjoint subsets of V .

3. Maximizing Lattice Submodular Functions

Over a Discrete Polymatroid

We consider the following problem:

maximize
x

f(x)

subject to x 2M
(4)

where f(x) is a lattice submodular function and M is a
discrete polymatroid. We assume that M is contained in the
natural domain of f , i.e., M ✓ ZV

+
. Here is our roadmap to

solve this problem: First, we relax the problem into the con-
tinuous domain. Second, we solve the relaxed problem with
an approximation guarantee. Finally, we round the solution
back and bound the rounding error which depends on the
“distance” of the function f to a DR-submodular function.

3.1. The Generalized Multilinear Extension (GME)

and its Properties

A Continuous Extension: We use the Generalized
Multilinear Extension (GME, Sahin et al. (2020), which has
several attractive properties. Let f be a lattice submodular
function of n variables. The GME is defined probabilisti-
cally, as an expectation of f over random integer vectors
R = [x1, . . . , xn] where each coordinate xi is selected
independently according to some categorical distribution
⇢i. The GME is defined on the product of n simplices, i.e.,
for ⇢ 2 �k�1

n , via

F (⇢) = F (⇢1, . . . ,⇢n) = ER⇠⇢1,...,⇢n [f(R)] (5)

Moreover, the GME has the following properties making
it attractive for maximization problems:

Proposition 1. Let F be the GME of an integer submodular

function f . Then we have

1. If f is monotone then
@F
@⇢ij

� 0 for all i 2 V and

j 2 {1, . . . , k � 1}
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2. F is DR-submodular (even if f is not), i.e.,
@2F

@⇢ij@⇢kl


0 for all i, j, k, l.

Now, we discuss the continuous relaxation of the constraint
M. Since M is a discrete polymatroid, its relaxation
P(M) becomes an integral polymatroid. For every valid
point ⇢, we have its corresponding point x 2 P(M)
which is given by the following relation. We can define a
linear function T : �k�1

n ! RV
+

where x = T (⇢) using
xi =

Pk�1

j=1
j⇢ij 8i 2 V .

3.2. Maximizing and Rounding the GME

Solving the relaxed problem: Now our original problem
(Equation (4)) becomes

max{F (⇢) : ⇢ 2 �k�1

n , T (⇢) 2 P(M)}. (6)

Since our new objective function F is DR-submodular,
and the constraints are down-closed and convex, we
can use any continuous DR-submodular optimization
algorithm for maximization (Mokhtari et al., 2018; Bian
et al., 2017c). These methods first linearize the objective
function using its gradient and then solve the linearized
problem over the constraint set iteratively. Thus, these
methods need a separation oracle for P (M), which can
be implemented, e.g., via the ellipsoid method. We can
thus find, in polynomial time, a vector v which maximizes
hv,rF (⇢)i subject to {v 2 �k�1

n , T (v) 2 P(M)}.
Separation for the constraint T (⇢) 2 P(M) is proved
by Ene and Nguyen (2016). In addition, separation for the
constraint ⇢ 2 �k�1

n can be done easily by coordinate-wise
check and a summation check for n dimensions. Then,
we can obtain a (1 � 1

e ) guarantee for monotone f and 1

e
guarantee (Feldman et al., 2011; Mokhtari et al., 2018) for
the optimization (6) over the continuous domain.

Rounding Back: Rounding in the polytope of the discrete
polymatroid has been considered independently by Soma
and Yoshida (2018); Chekuri and Vondrák (2009) and for
the DR-submodular case, the integer point can be recovered
by a provably lossless rounding scheme (Calinescu et al.,
2011; Chekuri et al., 2010). Similarly to Soma and Yoshida
(2018); Ene and Nguyen (2016), we can round the fractional
solution x

⇤
F

= T (⇢⇤) to an integral solution x
⇤
I

without
any loss in the approximation when the function f is DR-

submodular, since the GME is always upper bounded by the
value of the multilinear extension of the submodular func-
tion restricted on the unit cube which x belongs to. However,
for the lattice submodular case we incur an error for the
rounding which we characterize in Section 3.4. We use
randomized pipage rounding (Chekuri and Vondrák, 2009)
technique which does not require any function evaluation.

Algorithm 1 Monotone Lattice Submodular Maximization
subject to a Discrete Polymatroid
Input: f : ZV

+
! R,M ⇢ ZV

+

1 Initialize ⇢0 2 �k�1
n , t 1

2 while t  TF do

3 Compute rF (⇢t�1)
4 vt  argmaxv2�

k�1
n ,T (v)2P(M)

hrF (⇢t�1),vi
5 ⇢t  ⇢t�1 + 1

T v
t

6 t t+ 1

7 xF  T (⇢TF)
8 xI  Round(xF)

Output: xI 2M

3.3. Distance to a DR-submodular Function

There are several definitions that characterize how close a
function is to a submodular function. For the set submodular
case, the submodularity ratio is introduced by Das and
Kempe (2011), and generalized to the lattice case by Kuhnle
et al. (2018). Bian et al. (2017b) define the generalized

curvature of a set function However, we are primarily
interested in how close a given lattice submodular function
is to a DR-submodular function. The DR-ratio, introduced
by Lehmann et al. (2006); Qian et al. (2018); Kuhnle et al.
(2018) characterize how far a lattice submodular function is
to a DR-submodular function. The DR-ratio is defined by

�f = min
xy,i2V

f(x+ ei)� f(x)

f(y + ei)� f(y)
(7)

For monotone DR-submodular functions, �f is always
1. For monotone lattice submodular functions, we have
0  �f < 1. In order to bound the rounding error, we will
use an additive version of the DR-ratio which was also
considered in McMeel and Parpas (2019):

� = max
x2ZV

+ ,i2V
f(x+ 2ei)� 2f(x+ ei) + f(x) (8)

As stated in McMeel and Parpas (2019), we can have the
following decomposition. Let f be a lattice submodular
function. Then f can be represented as the sum of a
modular function and a DR-submodular function.
Proposition 2. fDR(x) = f(x) � �m(x) is DR-

submodular with m(x) =
Pn

i=1
x2

i

Note that, DR-ratio is defined for monotone submodular
functions whereas � and this decomposition holds for both
monotone and non-monotone functions.

3.4. Bounding the Rounding Loss

So far, we have seen how to maximize a lattice submodular
function subject to a discrete polymatroid constraint. Now,
using the decomposition above, we will bound the rounding
error, which depends on the �.
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Table 1. Bayesian Experimental Design with Repetition and Con-
cave Cost. TFW performs well in the continuous domain and its
rounded values are better than greedy.

K = 3, p = 2 K = 3, p = 4

↵ = 0.5 ↵ = 0.5 ↵ = 0.5 ↵ = 0.5
type � = 0.2 � = 0.3 � = 0.2 � = 0.3

fGR integer 5.56 4.96 7.01 5.95
FTFW fractional 5.52 4.92 7.02 5.91
FShFW fractional 4.84 4.30 6.35 5.28
fTFW integer 5.62 5.02 7.11 5.97
fShFW integer 5.34 4.57 6.77 5.70

Theorem 1. Let f be a monotone lattice submodular func-

tion with the decomposition f(x) = fDR(x)+� kxk2. Then

we have

f(x⇤
I
) � (1� 1

e ) max
x2M

f(x)��
⇣
E⇢⇤ kxk2 � kx⇤

I
k2
⌘

(9)

where E⇢⇤ kxk2 � kx⇤
I
k2 =

⇣
E⇢⇤ kxk2 � kx⇤

F
k2
⌘

+
⇣
kx⇤

F
k2 � kx⇤

I
k2
⌘
 nk2

4
+ n

For proof, please refer to Appendix A.

Corollary 1.1. Let f be a general (non-monotone) lat-

tice submodular function with the decomposition f(x) =
fDR(x) + � kxk2. Then we have

f(x⇤
I
) � 1

e max
x2M

f(x)� �
⇣
E⇢⇤ kxk2 � kx⇤

I
k2
⌘

(10)

Note that Algorithm 1 does not require an estimate of � to
be run. � is only required to get an upper bound for the
rounding error.

4. Experiments

Bayesian Experimental Design with Diminishing Cost

We consider a Bayesian Experimental Design (Chaloner and
Verdinelli, 1995) task. Instead of selecting a set of experi-
ments, we select multisets by allowing repetitions. Follow-
ing the setting in Srinivas et al. (2010), we consider g(x) =
1

2
log det

�
I+ ��2

Kx

�
. Note that since we allow repeti-

tions, Kx is a positive definite kernel matrix of size |x|⇥ |x|.
This function g measures the informativeness of the selected
multiset and is known as the information gain, of primary
interest in Bayesian D-optimal design. Notably, g is mono-
tone DR-submodular. In many experimental design settings,
repeating the same experiment multiple times is cheaper
than performing multiple different experiments, as there are
shared fixed costs when setting up an experiment. Motivated
by this, we also consider the cost of selecting an experiment

multiple times. We model the shared costs using a separable
concave function c�,↵(x) = �

Pn
i=1

x↵
i , where ↵ 2 (0, 1).

Combined, we have the following utility function: f(x) =
g(x) � c�,↵(x). Note that since this cost c is separable,
f still remains submodular but no longer DR-submodular.
Furthermore, as � increases, f becomes non-monotone.

We test our function on the temperature data collected from
46 sensors deployed at Intel Research Berkeley. Following
the experimental setup in (Srinivas et al., 2010), we use
�2 = 0.5. We use an integer lattice of size k = 5, concavity
parameter of the cost ↵ = 0.5, and the fixed cost parameter
� = 0.2. To optimize the non-monotone GME, we use
the Two-Phase FW (TFW) and Shrunken FW (ShFW)
from Bian et al. (2017a). As a baseline, we implemented a
basic greedy method (GR) which adds one element with the
largest marginal gain at each iteration. If the marginal gain
becomes negative, the algorithm terminates. Otherwise, it
terminates when the constraint can no longer be satisfied.
For non-monotone lattice submodular functions, we are
not aware of an approximation guarantee of this basic
algorithm. We use the oblivious step size 2

t+2
for TFW

with a total number of 20 steps. For rounding, we use the
randomized pipage rounding procedure for non-monotone
submodular functions (Vondrák, 2011) 10 times and
report the maximum value. As for the constraints, we use
discrete polymatroids with varying size of partition (p) and
cardinality (K) constraints.

In the Table 1, we observe two main findings. First, TFW
performs better than ShFW in the continuous domain, as
also observed by (Bian et al., 2017a). Although the approx-
imation guarantee for TFW is 1

4
and for ShFW is 1

e , TFW
performs better. When we compare the rounded function
values with the greedy algorithm, we see that the rounded
value of TFW is better. Here, the parameters ↵ and � both af-
fect the non-DR submodularity of the function and although
Corollary 1.1 tells us that in the worst case, the rounded func-
tion value may be much lower than the fractional function
value, we do not observe this behaviour on this real dataset.

5. Conclusion

In this work, we present the first approach for lattice
submodular maximization subject to a discrete polymatroid
constraint. Our approach exploits the Generalized Multi-
linear Extension, which is a DR-submodular extension even
if the function is only lattice submodular. After maximizing
the extension, we show that we can bound the rounding
error. To do this, we decompose the lattice submodular func-
tion into two parts, where one part is DR-submodular and
the remaining part is modular. The modular part depends
on the distance between the lattice submodular function
to a DR-submodular function and we characterize the
relationship between rounding error and the decomposition.
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