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Sampling subsets with kDPPs results in implicit regu-
larization in the context of ridgeless Kernel Regression.

Abstract

Let k(x, y) > 0 be a continuous and strictly posi-
tive definite kernel. Gram matrix K = [k(xi, xj)]i,j .
Landmark sampling: C ⊆ [n].
Sampling matrix: C ∈ Rn×|C|, C = IC .
Submatrices: KC = KC and KCC = C>KC.
Nyström approximation: L(K, C) = KCK

−1
CCK

>
C .

Kernel methods

Let L be a n× n positive definite symmetric matrix.
The probability of sampling a subset C ⊆ [n] is

Pr(Y = C) = det(LCC)/ det(I + L).

• Define L = K/α with α > 0.

• denote the process by DPPL(K/α).

The inclusion probabilities are given by

Pr(C ⊆ Y ) = det(PCC),

where the marginal kernel is P = K(K + αI)−1,. The
diagonal of P gives the Ridge Leverage Scores
(RLS) of the data points: `i = Pii for i ∈ [n]. See
El Alaoui, Mahoney, NeurIPS 2015.

DPP

Ridgeless Kernel Regression. Given {(xi, yi) ∈
Rd × R}i∈[n], we propose to solve

f?C = arg min
f∈H
‖f‖2H, s.t. yi = f(xi) for all i ∈ C, (1)

where C ⊆ [n] is sampled by using a DPP. Here,
H is the reproducing kernel Hibert space associated
with k. The expression of the solution is f?C (x) =
k>x CK

−1
CC C

>y, where kx = [k(x, x1), . . . , k(x, xn)]>.

Ridgeless regression:

For C ∼ DPP (K/α), the expectation of the rigdeless
predictors gives the function

EC [f?C (x)] = k>x (K + αI)−1y =: f?(x) (2)

which is the solution of Kernel Ridge Regression

f? = arg min
f∈H

n∑
i=1

(yi − f(xi))
2 + α‖f‖2H.

A large α > 0 yields a small expected subset size for
DPP (K/α).

Theorem 1. Let C ∼ DPP (K/α) with K � 0. Then,

EC [CK−1CC C
>] = (K + αI)−1.

Notice that (CKCCC
>)† = CK−1CC C

>.
(see, Fanuel, Schreurs, Suykens arXiv:1905.12346 and
Mutńy, Dereziński, Krause AISTATS 2020)

Implicit regularization with DPP sampling

kDPPs(K) are defined by

Pr(Y = C) = det(KCC)/ek(K),

where ek(λ) =
∑

1≤i1<···<ik≤n λi1 . . . λik are elemen-
tary symmetric polynomials.

Lemma 1. Let C ∼ kDPP (K) and u,w ∈ Rn. We
have the identities

EC [u>CK−1CC C
>w] =

ek(K)− ek(K −wu>)

ek(K)

=
(−1)k+1

(n− k)!

d(n−k)

d tn−k

[
u> adj(tI−K)w

ek(K)

]
t=0

,

The above result is easier to interpret in the spectral
domain.

Analogous results for kDPPs

Let the eigendecomposition of K be

K =

n∑
`=1

λ`v`v
>
` .

Denote by λ ∈ Rn contain the eigenvalues of K, such
that λ1 ≥ · · · ≥ λn. Let λk̂ ∈ Rn−1 be the same
vector with λk missing.

Corollary 1. Let C ∼ kDPP (K). We have the iden-
tity:

EC [CK−1CC C
>] =

n∑
`=1

v`v
>
`

λ` +
ek(λˆ̀)

ek−1(λˆ̀)

. (3)

Proposition 1. With the notations defined above, we
have

EC [CK−1CC C
>] �

n∑
`=1

v`v
>
`

λ` + α
, (4)

where α =
∑n

i=k λi and C ∼ kDPP (K).

Remark 1 (Upper bound). Consider the term ` = n
in (3). Then, the additional term at the denominator
can be lower bounded as follows:

ek(λn̂)

ek−1(λn̂)
≥ n− k

k
λn−1

(
λn−1
λ1

)k−1

> 0,

where we used that ek(λn̂) includes
(
n−1
k

)
terms.

Understanding Lemma 1
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Ensemble Ridgeless Regressions: Abalone dataset

Ensemble Ridgeless Regressions: Bikesharing dataset

Ensemble Ridgeless Regressions: CASP dataset

• Prediction is done by averaging the ridgeless predictors in an ensemble
approach: f̄ = 1

m

∑m
i=1 f

?
Ci .

• Split in 50% training and 50% test data.

• The dataset is stratified: the test set is divided into ’bulk’ and ’tail’.

– Bulk: test points where RLS are smaller than the 70% quantile

– Tail: test points where RLS are larger than the 70% quantile.

• We calculate the symmetric mean absolute percentage error (SMAPE):
1
n

∑n
i=1

|yi−ŷi|
(|yi|+|ŷi|)/2 of each group.

Methodology

We use 3 sampling algorithms:

• uniform sampling,

• exact RLS sampling and approximate RLS: BLESS (Rudi et al. NeurIPS
2018).

• exact kDPP sampling and approximate kDPP: DPP-VFX (Derezinski et al.
NeurIPS 2019).

Comparisons of different samplings

Ensemble Nyström: Adult dataset

Dataset n d

Adult 48842 110
Abalone 4177 8
Wine Q. 6497 11
Bike S. 17389 16

CASP 45730 9

Datasets

Exact formula for implicit regularization. Interest for regression problems in
order to achieve a low MAPE in the tail of the test data.

Conclusions
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