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1. Introduction
Training models with discrete latent variables is challeng-
ing due to the difficulty of estimating the gradients accu-
rately. Much of the recent progress has been achieved
by taking advantage of continuous relaxations of the sys-
tem, which are not always available or even possible. The
Augment-REINFORCE-Merge (ARM) estimator (Yin and
Zhou, 2019) provides an alternative that, instead of re-
laxation, uses continuous augmentation. Applying anti-
thetic sampling over the augmenting variables yields a rel-
atively low-variance and unbiased estimator applicable to
any model with binary latent variables. However, while anti-
thetic sampling reduces variance, the augmentation process
increases variance. We show that ARM can be improved by
analytically integrating out the randomness introduced by
the augmentation process, guaranteeing substantial variance
reduction. Our estimator, DisARM, is simple to implement
and has the same computational cost as ARM. We evaluate
DisARM on several generative modeling benchmarks and
show that it consistently outperforms ARM and a strong
independent sample baseline in terms of both variance and
log-likelihood.

2. Background
We consider the problem of optimizing

Eqθ(b) [fθ(b)] , (1)

w.r.t. with the parameters θ of a factorial Bernoulli distribu-
tion qθ(b). The gradient with respect to θ is

∇θEqθ(b) [fθ(b)]
= Eqθ(b) [fθ(b)∇θ log qθ(b) +∇θfθ(b)] . (2)

The second term can typically be estimated with a single
Monte Carlo sample, so for notational clarity, we omit the
dependence of f on θ in the following sections. Monte
Carlo estimates of the first term can have large variance.
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Low-variance, unbiased estimators of the first term will be
our focus.

Yin and Zhou (2019) use an antithetically coupled pair of
samples to derive the ARM estimator. Antithetic sampling
can reduce the variance of a Monte Carlo estimate if it
induces negative covariance between the integrand evalua-
tions (Owen, 2013). While we have no control over f , we
can exploit properties of the score function ∇θ log qθ(b).
Buesing et al. (2016) show that for “location-scale” dis-
tributions, antithetically coupled samples have perfectly
negatively correlated score functions, which suggests that
using antithetic samples to estimate the gradient will be
favorable. Unfortunately, the Bernoulli distribution is not a
location-scale distribution, so this result is not immediately
applicable.

However, the Bernoulli distribution can be reparameterized
in terms of the Logistic distribution which is a location-scale
distribution. In other words, when z ∼ Logistic(αθ, 1),
then b = 1z>0 ∼ Bernoulli(σ(αθ)), where σ(x) is the
Logistic function. We also have

Eqθ(b) [f(b)∇θ log qθ(b)]
= ∇θEqθ(b) [f(b)] = ∇θEqθ(z) [f(1z>0)]

= Eqθ(z) [f(1z>0)∇θ log qθ(z)] .

This suggests sampling an antithetically coupled pair (z, z̃)1

and forming the estimator

gARM(z, z̃) (3)

= 1
2 (f(1z>0)∇θ log qθ(z) + f(1z̃>0)∇θ log qθ(z̃))

= 1
2 (f(1z>0)− f(1z̃>0))∇θ log qθ(z)

= 1
2 (f(11−u<σ(αθ))− f(1u<σ(αθ))) (2u− 1)∇θαθ

where u = σ(αθ − z) and we use the fact that
∇θ log qθ(z) = −∇θ log qθ(z̃) (Buesing et al., 2016) be-
cause the Logistic distribution is a location-scale distribu-
tion. This is the ARM estimator (Yin and Zhou, 2019).
Notably, ARM only evaluates f at discrete values, so does
not require a continuous relaxation. We expect such an esti-
mator to have low variance because the learning signal is a
difference of evaluations of f and Yin and Zhou (2019) em-
pirically show that it performs comparably or outperforms

1In other words, drawing ε ∼ Logistic(0, 1), then setting
z = ε+ αθ and z̃ = −ε+ αθ .
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previous methods. In the scalar setting, ARM is not useful
because the exact gradient can be computed with 2 function
evaluations, however, ARM can naturally be extended to the
multi-dimensional setting with only 2 function evaluations

1
2 (f(b)− f(b̃)) (2u− 1)∇θαθ, (4)

whereas the exact gradient requires exponentially many
function evaluations.

3. DisARM
Requiring a reparameterization in terms of a continuous

variable seems unnatural when the objective (Eq. 1) only
depends on the discrete variable. The cost of this reparame-
terization is an increase in variance. In fact, the variance of
f(1z>0)∇θ log qθ(z) is at least as large as the variance of
f(b)∇θ log qθ(b) because

f(b)∇θ log qθ(b) = Eqθ(z|b) [f(1z>0)∇θ log qθ(z)] , (5)

hence

Var(f(1z>0)∇θ log qθ(z))
= Var(f(b)∇θ log qθ(b))
+ Eb

[
Varz|b(f(1z>0)∇θ log qθ(z))

]
,

i.e., an instance of conditioning (Owen, 2013). So, while
ARM reduces variance via antithetic coupling, it also in-
creases variance due to the reparameterization. It is not clear
that this translates to an overall reduction in variance. In
fact, as we show empirically, a two-independent-samples
REINFORCE estimator with a leave-one-out baseline per-
forms comparably or outperforms the ARM estimator (e.g.,
Table 1).

The relationship in Eq. 5 suggests that it might be possible to
perform a similar operation on the ARM estimator. Indeed,
the key insight is to simultaneously condition on the pair
(b, b̃) = (1z>0,1z̃>0). First, we derive the result for scalar
b, then extend it to the multi-dimensional setting. Integrating
out z conditional on (b, b̃), results in our proposed estimator

gDisARM(b, b̃) := Eq(z|b,b̃) [gARM]

= 1
2Eq(z|b,b̃) [(f(1z>0)− f(1z̃>0))∇θ log qθ(z)]

= 1
2 (f(b)− f(b̃))Eq(z|b,b̃) [∇θ log qθ(z)]

= 1
2 (f(b)− f(b̃))

(
(−1)b̃1b6=b̃σ(|αθ|)

)
∇θαθ. (6)

See Appendix A for a detailed derivation. Note that
Eq(z|b,b̃) [∇θ log qθ(z)] vanishes when b = b̃. While this
does not matter for the scalar case, it will prove useful for
the multi-dimensional case. We call the estimator DisARM

Code and additional information: https://sites.
google.com/view/disarm-estimator.

because it integrates out the continuous randomness in ARM
and only retains the discrete component. Similarly to above,
we have that the variance of DisARM is upper bounded by
the variance of ARM

Var(gARM) = Var(gDisARM) + Eb,b̃
[
Varz|b,b̃(gARM)

]
≥ Var(gDisARM).

3.1. Multi-dimensional case

Now, consider the case where b is multi-dimensional. Al-
though the distribution is factorial, f may be a complex
nonlinear function. Focusing on a single dimension of αθ,
we have

∇(αθ)iEqθ(b) [f(b)] = ∇(αθ)iEbi

[
Eb−i [f(b−i,bi)]

]
= Ebi,b̃i

[
1
2

(
Eb−i [f(b−i,bi)

]
− Eb−i [f(b−i, b̃i)])

·
(
(−1)b̃i1bi 6=b̃i

σ(|(αθ)i|)
)]
,

which follows from applying Eq. 6 where the function is
now Eb−i [f(b−i,bi)], and b−i denotes the vector of sam-
ples obtained by leaving out ith dimension. Then, because
expectations are linear, we can couple the inner expectations

Ebi,b̃i

[
1
2 (Eb−i [f(b−i,bi)]− Eb−i [f(b−i, b̃i)])(
(−1)b̃i1bi 6=b̃i

σ(|(αθ)i|)
)]

= Ebi,b̃i

[
1
2 (Eb−i,b′−i

[f(b−i,bi)− f(b′−i, b̃i)])(
(−1)b̃i1bi 6=b̃i

σ(|(αθ)i|)
)]
,

where we are free to choose any joint distribution on
(b−i,b

′
−i) that maintains the marginal distributions. A nat-

ural choice satisfying this constraint is to draw (b, b̃) as an
antithetic pair (independently for each dimension), then we
can form the multi-dimensional DisARM estimator of ∇αθ

gDisARM,i :=
1
2 (f(b)− f(b̃))(−1)

b̃i1bi 6=b̃i
σ(|(αθ)i|).

Notably, whenever bi = b̃i, the gradient estimator vanishes
exactly. In contrast, the multi-dimensional ARM estimator
of ∇(αθ)i (Eq. 4) vanishes only when b = b̃ in all dimen-
sions, which occurs seldomly when b is high dimensional.
The estimator for ∇θ is obtained by summing over i:

gDisARM(b, b̃) =
∑
i (gDisARM,i · ∇θ(αθ)i) . (7)

4. Experimental Results
Our goal was variance reduction to improve optimization,
so we compare DisARM to the state-of-the-art methods:
ARM (Yin and Zhou, 2019) and RELAX (Grathwohl et al.,

https://sites.google.com/view/disarm-estimator
https://sites.google.com/view/disarm-estimator
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Figure 1: Training a Bernoulli VAE on FashionMNIST dataset by maximizing the ELBO. We plot the train ELBO (left
column), test 100-sample bound (middle column), and the variance of gradient estimator (right column) for the linear (top
row) and nonlinear (bottom row) models. We plot the mean and one standard error based on 5 runs from different random
initializations. Results on MNIST and Omniglot were qualitatively similar (Appendix Figure 3).

2018) As we mentioned before, ARM and DisARM are
more generally applicable than RELAX, however, we in-
clude it for comparison. We also include a two-independent-
sample REINFORCE estimator with a leave-one-out base-
line (REINFORCE LOO, Kool et al., 2019). This is a simple,
but competitive method that has been omitted from previous
works.

We train a VAE with Bernoulli latent variables, which is
used as a gradient estimator benchmark for discrete latent
variables. We evaluate the gradient estimators on three
benchmark generative modeling datasets: MNIST, Fashion-
MNIST and Omniglot. As our goal is optimization, we use
dynamic binarization to avoid overfitting and we largely
find that training performance mirrors test performance. We
use the standard split into train, validation, and test sets. See
Appendix C for further implementation details.

We use the same model architecture as Yin and Zhou (2019).
Briefly, we considered linear and nonlinear models. The
nonlinear model used fully connected neural networks with
two hidden layers of 200 leaky ReLU units (Maas et al.,
2013). Both models had a single stochastic layer of 200
Bernoulli latent variables. The models were trained with
Adam (Kingma and Ba, 2015) using a learning rate 10−4

on mini-batches of 50 examples for 106 steps.

During training, we measure the training ELBO, the 100-
sample bound on the test set, and the variance of the gradient
estimator for the inference network averaged over parame-

ters2 and plot the results in Figure 1 for FashionMNIST and
Appendix Figure 3 for MNIST and Omniglot. We report the
final results in Table 1. We find a substantial performance
gap between ARM and REINFORCE LOO, DisARM, or
RELAX across all measures and configurations. We com-
pared our implementation of ARM with the open-source
implementation provided by Yin and Zhou (2019) and find
that it replicates their results. Yin and Zhou (2019) evalu-
ate performance on the statically binarized MNIST dataset,
which is well known for overfitting and substantial over-
fitting is observed in their results. In such a situation, a
method that performs worse at optimization may lead to
better generalization. Additionally, they report the variance
of the gradient estimator w.r.t. logits of the latent variables
instead, which explains the discrepancy in the variance plots.
Unlike the inference network parameter gradients, the logit
gradients have no special significance as they are backprop-
agated into the inference network rather than used to update
parameters directly. Finally, they use a different network ar-
chitecture than the methods they compare to, so their results
are not directly comparable to previously reported numbers.
We use the same architecture across methods and imple-
ment the estimators in the same framework to ensure a fair
comparison.

DisARM has reduced gradient estimator variance over RE-
INFORCE LOO across all models and datasets. This trans-
lates to consistent improvements over REINFORCE LOO

2Estimated by approximating moments with an exponential
moving average with decay rate 0.999.
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Table 1: Mean variational lower bounds and the standard error of the mean computed based on 5 runs from different random
initializations. The best performing method (up to the standard error) for each task is in bold.

Train ELBO

Dynamic MNIST REINFORCE LOO ARM DisARM RELAX

Linear −116.57± 0.15 −117.66± 0.04 −116.30± 0.08 −115.93± 0.15
Nonlinear −102.45± 0.12 −107.32± 0.28 −102.56± 0.19 −102.53± 0.15

Fashion MNIST

Linear −256.33± 0.14 −256.80± 0.16 −255.97± 0.07 −255.83± 0.03
Nonlinear −237.66± 0.11 −241.30± 0.10 −237.77± 0.08 −238.23± 0.17

Omniglot

Linear −121.66± 0.10 −122.45± 0.10 −121.15± 0.12 −120.79± 0.09
Nonlinear −115.26± 0.15 −118.76± 0.05 −115.08± 0.11 −116.56± 0.15

Test 100-sample bound

Dynamic MNIST REINFORCE LOO ARM DisARM RELAX

Linear −109.25± 0.09 −109.70± 0.05 −109.13± 0.04 −108.76± 0.06
Nonlinear −97.41± 0.09 −101.15± 0.39 −97.52± 0.11 −97.76± 0.11

Fashion MNIST

Linear −252.55± 0.12 −252.66± 0.07 −252.30± 0.05 −252.13± 0.06
Nonlinear −236.94± 0.09 −239.37± 0.15 −237.02± 0.07 −237.95± 0.16

Omniglot

Linear −117.70± 0.10 −118.01± 0.06 −117.39± 0.09 −117.10± 0.08
Nonlinear −114.39± 0.21 −116.56± 0.07 −114.26± 0.14 −116.28± 0.26

with linear models and comparable performance on the
nonlinear models across all datasets. For linear networks,
RELAX achieves lower gradient estimator variance and bet-
ter performance. However, this does not hold for nonlinear
networks. For nonlinear networks across three datasets, RE-
LAX initially has lower variance gradients, but DisARM
overtakes it as training proceeds. Furthermore, training the
model on a P100 GPU was nearly twice as slow for RELAX,
while ARM, DisARM and REINFORCE LOO trained at the
same speed. This is consistent with previous findings (Yin
and Zhou, 2019).

5. Multi-sample Variational Bounds
We also derive a local version of DisARM designed for op-
timizing the multi-sample variational bound in Appendix B.
In Appendix D.2, we show that it outperforms VIMCO
(Mnih and Rezende, 2016), the current state-of-the-art gra-
dient estimator.

6. Discussion
We have introduced DisARM, an unbiased, low-variance
gradient estimator for Bernoulli random variables based on
antithetic sampling. Our starting point was the ARM estima-
tor (Yin and Zhou, 2019), which reparameterizes Bernoulli

variables in terms of Logistic variables and estimates the
REINFORCE gradient over the Logistic variables using an-
tithetic sampling. Our key insight is that the ARM estimator
involves unnecessary randomness because it operates on
the augmenting Logistic variables instead of the original
Bernoulli ones. In other words, ARM is competitive despite
rather than because of the Logistic augmentation step, and
its low variance is completely due to the use of antithetic
sampling. We derive DisARM by integrating out the aug-
menting variables from ARM using a variance reduction
technique known as conditioning. As a result, DisARM has
lower variance than ARM and consistently outperforms it.
Then, we extended DisARM to the multi-sample objective
and showed that it outperformed the state-of-the-art method.
Given DisARM’s generality and simplicity, we expect it to
be widely useful.

While relaxation-based estimators (e.g., REBAR and RE-
LAX) can outperform DisARM in some cases, DisARM is
always competitive and more generally applicable as it does
not rely on a continuous relaxation. In the future, it would
be interesting to investigate how to combine the strengths
of DisARM with those of relaxation-based estimators in a
single estimator. Finally, ARM has been extended to cate-
gorical variables (Yin et al., 2019) and future work could
extend DisARM similarly.
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A. DisARM Derivation
To finish the derivation of Eq. 6, we need to compute

Eq(z|b,b̃) [∇θ log qθ(z)]

= Eq(z|b,b̃)

[
1− 2 exp(−(z − αθ))

1 + exp(−(z − αθ)

]
∇θαθ

= Eq(u|b,b̃) [2u− 1]∇θαθ =
(
2Eq(u|b,b̃) [u]− 1

)
∇θαθ,

where we have used the change of variables z = log(u)−
log(1 − u) + αθ. This is a common reparameterization
of a Logistic variable in terms of a Uniform variable, so
when z ∼ Logistic(αθ, 1), then u ∼ Uniform(0, 1). Thus,
the joint distribution q(u, b, b̃) is generated by sampling
u ∼ Uniform(0, 1) and setting b = 1z>0 = 11−u<σ(αθ)

and b̃ = 1z̃>0 = 1u<σ(αθ). Conditioning on b, b̃ imposes
constraints on the value of u, hence q(u|b, b̃) is a truncated
Uniform variable. To understand Eq(u|b,b̃) [u], it suffices to
enumerate the possibilities:

• b = 0, b̃ = 0 implies σ(αθ) < u < σ(−αθ), which is
symmetric around 1

2 , so Eq(u|b,b̃) [u] =
1
2 .

• b = 1, b̃ = 1 implies σ(−αθ) < u < σ(αθ), which is
symmetric around 1

2 , so Eq(u|b,b̃) [u] =
1
2 .

• b = 0, b̃ = 1 implies u < min(σ(−αθ), σ(αθ)) =
1− σ(|αθ|). Thus,

Eq(u|b,b̃) [u] =
1− σ(|αθ|)

2
.

• b = 1, b̃ = 0 implies u > max(σ(−αθ), σ(αθ)) =
σ(|αθ|). Thus,

Eq(u|b,b̃) [u] =
1 + σ(|αθ|)

2
.

Combining the cases, we have that

2Eq(u|b,b̃) [u]− 1 = (−1)b̃1b 6=b̃σ(|αθ|).

B. Multi-sample Variation Bounds
B.1. Background

Objectives of the form Eq. 1 are often used in variational
inference for discrete latent variable models. For example,
to fit the parameters of a discrete latent variable model
pθ(x,b), we can lower bound the log marginal likelihood
log pθ(x) ≥ Eqθ(b|x) [log pθ(x,b)− log qθ(b|x)], where
qθ(b|x) is a variational distribution. Burda et al. (2016)
introduced an improved multi-sample variational bound that
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reduces to the ELBO when K = 1 and converges to the log
marginal likelihood as K →∞

L := E∏
k pθ(b

k)

[
log 1

K

∑
k w(b

k)
]
,

where w(b) = p(b,x)
q(b|x) . We omit the dependence of w on θ

because it is straightforward to account for.

In this case, Mnih and Rezende (2016) introduced a gradient
estimator, VIMCO, that uses specialized control variates
that take advantage of the structure of the objective

∑
k

(
log 1

K

∑
j w(b

j)− log 1
K−1

∑
j 6=k w(b

j)
)

·∇θ log qθ(bk|x),

which is unbiased because the second term has zero expec-
tation: E∏

k qθ(b
k|x) [·] = 0.

B.2. DisARM Extension to Multi-sample Variation
Bounds

We could naïvely apply DisARM to the multi-sample objec-
tive, however, our preliminary experiments did not suggest
this improved performance over VIMCO. However, we can
obtain an estimator similar to VIMCO (Mnih and Rezende,
2016) by applying DisARM to the multi-sample objective
locally, once for each sample. Recall that in this setting, our
objective is the multi-sample variational lower bound (Burda
et al., 2016)

L := E∏
k qθ(b

k)

[
log

1

K

∑
k

w(bk)

]

= E∏
k qθk (b

k)

[
log

1

K

∑
k

w(bk)

]
,

where to simplify notation, we introduced dummy vari-
ables θk = θ, so that ∇θL =

∑
k
∂L
∂θk

. Now, let
fb−k(d) = log 1

K

(∑
c∈b−k w(c) + w(d)

)
with b−k :=

(b1, . . . ,bk−1,bk+1, . . . ,bK), so that

∂L
∂θk

=
∂L
∂θk

Ebk
[
Eb−k

[
fb−k(b

k)
]]

=
∂Ebk

[
Eb−k

[
fb−k(b

k)
]]

∂αθk

∂αθk

∂θk
.

Then by applying Eq. 7 to Eb−k [fb−k ], we have that(
∂L
∂α

θk
Ebk

[
Eb−k

[
fb−k(b

k)
]])

i
is

Ebk,b̃k

[
1
2

(
Eb−k

[
fb−k(b

k)
]
− Eb−k

[
fb−k(b̃

k)
])

(
1bki 6=b̃ki

(−1)b̃
k
i σ(|(αθk)i|)

)]
.

We can form an unbiased estimator by drawing K antithetic
pairs b1, b̃1, . . . ,bK , b̃K and forming

1

4

(
fb−k(b

k)− fb−k(b̃k) + fb̃−k(b
k)− fb̃−k(b̃

k)
)

(
1bki 6=b̃ki

(−1)b̃
k
i σ(|(αθ)i|)

)
, (8)

for the gradient of the ith dimension and
kth sample. Conveniently, we can compute
w(b1), w(b̃1), . . . , w(bK), w(b̃K) once and then compute
the estimator for all k and i without additional evaluations
of w. As a result, the computation associated with this
estimator is the same as for VIMCO with 2K samples, and
thus we use it as a baseline comparison in our experiments.
We could average over further configurations to reduce the
variance of our estimate of Eb−k [fb−k ], however, we leave
evaluating this to future work.

C. Experimental Details
Input images to the networks were centered with the
pixel mean of the training dataset. For the nonlinear
network activations, we used leaky rectified linear units
(LeakyReLU) (Maas et al., 2013) activations with 0.3 neg-
ative slope as in (Yin and Zhou, 2019). The parameters of
the inference and generation networks were optimized with
Adam (Kingma and Ba, 2015) using learning rate 1× 10−4.
The logits for the prior distribution p(b) were optimized
using SGD with learning rate 1 × 10−2. For RELAX, we
initialize the trainable temperature and scaling factor of the
control variate to 0.1 and 1.0, respectively. The learned
control variate in RELAX was a single layer neural network
with 137 LeakyReLU units. The control variate parame-
ters were also optimized with Adam using learning rate
1× 10−4.

D. Additional Experimental Results
D.1. Learning a Toy Model

As a simple illustrative problem, introduced
by Tucker et al. (2017), we apply DisARM
to maximize Eb∼Bernoulli(σ(φ))

[
(b− p0)2

]
with

p0 ∈ {0.49, 0.499, 0.4999}, and compare its perfor-
mance to ARM and REINFORCE LOO in Figure 23.
DisARM exhibits lower variance than REINFORCE LOO
and ARM, especially for the more difficult versions of the
problem as p0 approaches 0.5.

3Yin and Zhou (2019) show that ARM outperforms RELAX
on this task, so we omit it.
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Figure 2: Comparing gradient estimators for the toy problem (Appendix D.1). We plot the trace of the estimated Bernoulli
probability σ(φ), the estimated gradients, and the variance of the estimated gradients. The variance is measured based on
5000 Monte-Carlo samples at each iteration.
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Figure 3: Experimental results for training a Bernoulli VAE with ELBO using RELAX (blue), REINFORCE LOO (orange),
ARM (green) and DisARM (red) to update the parameters. We applied the estimators on MNIST and Omniglot with
dynamic binarization. We evaluate the ELBO on training set (left column), 100-sample bound on test set (middle column)
and the variance of gradients (right column) for linear (top row) and nonlinear (bottom row) models. The mean and standard
error (shaded area) are estimated given 5 trials with different random initializations.
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D.2. Training a Bernoulli VAE with Multi-sample
Bounds

To ensure a fair comparison on computational grounds, we
compare the performance of models trained using DisARM
with K pairs of antithetic samples to models trained using
VIMCO with 2K independent samples. For all of the perfor-
mance results, we use the 2K-sample bound, which favors
VIMCO because this is precisely the objective it maximizes.

In order for a comparison of gradient estimator variances to
be meaningful, the estimators must be unbiased estimates
of the same gradient. So for the variance comparison, we
compare DisARM with K pairs to averaging two indepen-
dent VIMCO estimators with K samples so that they use
the same amount of computation. Furthermore, we com-
pute the variance estimates along the same model trajectory
(generated by VIMCO updates).

As shown in Appendix Figure 4, Figure 5, Figure 6 and Ap-
pendix Table 2, DisARM consistently improves on VIMCO
across different datasets, network settings, and number of
samples/pairs.
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Figure 4: Training a Bernoulli VAE by maximizing the multi-sample variational bound with DisARM and VIMCO on
Dynamic MNIST. We report the training and test multi-sample bound and the variance of the gradient estimators for the
linear (top row) and nonlinear (bottom row) models.
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Figure 5: Training a Bernoulli VAE by maximizing the multi-sample variational bound with DisARM and VIMCO on
FashionMNIST. We report the training and test multi-sample bound and the variance of the gradient estimators for the
linear (top row) and nonlinear (bottom row) models.
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Figure 6: Training a Bernoulli VAE by maximizing the multi-sample variational bound with DisARM and VIMCO on
Omniglot. We report the training and test multi-sample bound and the variance of the gradient estimators for the linear (top
row) and nonlinear (bottom row) models.

Table 2: Comparison of multi-sample bounds. We report the variational lower bound averaged over 5 trials with different
random initializations and the standard error of the mean. We bolded the best performing method (up to standard error) for
each task. For VIMCO K-samples, we report the K-sample bound and for DisARM K-pairs, we report the 2K-sample
bound for a fair comparison to VIMCO on computational grounds although DisARM is optimizing the K-sample bound.

Train multi-sample bound

Dynamic MNIST DisARM 1-pair VIMCO 2-samples DisARM 10-pairs VIMCO 20-samples

Linear −114.06± 0.13 −115.80± 0.08 −108.61± 0.08 −109.40± 0.07
Nonlinear −100.80± 0.11 −101.14± 0.10 −93.89± 0.06 −94.52± 0.05

Fashion MNIST

Linear −254.15± 0.09 −255.41± 0.10 −247.77± 0.08 −249.60± 0.11
Nonlinear −236.91± 0.10 −236.41± 0.10 −231.34± 0.06 −232.01± 0.08

Omniglot

Linear −119.89± 0.06 −121.66± 0.08 −116.70± 0.03 −117.68± 0.07
Nonlinear −114.45± 0.06 −114.18± 0.07 −108.29± 0.04 −108.37± 0.05

Test multi-sample bound

Dynamic MNIST DisARM 1-pair VIMCO 2-samples DisARM 10-pairs VIMCO 20-samples

Linear −113.63± 0.13 −115.31± 0.07 −108.18± 0.08 −108.97± 0.08
Nonlinear −102.03± 0.10 −102.15± 0.11 −94.78± 0.07 −95.34± 0.06

Fashion MNIST

Linear −256.14± 0.10 −257.35± 0.12 −249.71± 0.10 −251.52± 0.13
Nonlinear −239.53± 0.10 −238.99± 0.11 −233.82± 0.08 −234.47± 0.09

Omniglot

Linear −120.23± 0.07 −121.99± 0.08 −117.29± 0.04 −118.29± 0.07
Nonlinear −118.96± 0.07 −118.36± 0.11 −112.43± 0.07 −112.42± 0.07
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