
Gaussian Process Optimization with Adaptive Sketching:
Scalable and No Regret

Daniele Calandriello 1 Luigi Carratino 2 Alessandro Lazaric 3 Michal Valko 4 Lorenzo Rosasco 1 2

1. Introduction
Gaussian processes (GP) are a popular Bayesian approach
for the optimization of black-box functions. Despite their ef-
fectiveness in simple problems, GP-based algorithms hardly
scale to complex high-dimensional functions, as their per-
iteration time and space cost is at least quadratic in the
number of dimensions d and iterations t. Given a set of
A alternative to choose from, the overall runtime O(t3A)
quickly becomes prohibitive. In this paper, we introduce
BKB (budgeted kernelized bandit), an approximate GP algo-
rithm for optimization under bandit feedback that achieves
near-optimal regret (and hence near-optimal convergence
rate) with near-constant per-iteration complexity and no
assumption on the input space or the GP’s covariance.

Combining a kernelized linear bandit algorithm (GP-UCB)
with randomized matrix sketching technique (i.e., leverage
score sampling), we prove that selecting inducing points
based on their posterior variance gives an accurate low-rank
approximation of the GP, preserving variance estimates and
confidence intervals. As a consequence, BKB does not suf-
fer from variance starvation, an important problem faced
by many previous sparse GP approximations. Moreover,
we show that our procedure selects at most Õ(deff) points,
where deff is the effective dimension of the explored space,
which is typically much smaller than both d and t. This
greatly reduces the dimensionality of the problem, thus lead-
ing to a O(TAd2eff) runtime andO(Adeff) space complexity.

2. Background
Notation. We denote by [A]ij the (i, j) element of matrix
A, and by ‖x‖2A = xTAx the norm with metric A. Finally,
we denote the first T integers as [T] := {1, . . . , T}.

Online optimization under bandit feedback. Let f :

1LCSL - Istituto Italiano di Tecnologia, Italy & MIT, USA
2UNIGE - Università degli Studi di Genova, Italy 3FAIR - Face-
book AI Research Paris, France 4INRIA Lille - Nord Europe Se-
queL team, France. Correspondence to: Daniele Calandriello
<daniele.calandriello@iit.it>.

Proceedings of the Workshop on Negative Dependence in Ma-
chine Learning at the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

Full version appears as https://arxiv.org/abs/1903.05594.

A → R be a reward function that we wish to optimize
over a set of decisions A, also called actions or arms. For
simplicity, we assume that A = {xi}Ai=1 is a fixed finite
set of A vectors in Rd. At each step t ∈ [T] the learner 1)
chooses an arm xt ∈ A, 2) receives reward yt = f(xt)+ηt,
where ηt is a zero-mean noise, 3) updates its model of the
problem. The goal of the learner is to minimize its cumula-
tive regret RT =

∑T
t=1 f(x∗) − f(xt) w.r.t. the best arm

x∗, where x∗ = arg maxxi∈A f(xi). In particular, the ob-
jective of a no-regret algorithm is to have RT /T go to zero
as T grows as fast as possible. We recall that the regret is
strictly related to the convergence rate and the optimization
performance. In fact, let xT be an arm chosen at random
from the sequence of arms (x1, . . . , xT) selected by the
learner, then f(x∗)− E[f(xT)] ≤ RT /T .

Gaussian process optimization and GP-UCB. A popular
no-regret algorithm for optimization under bandit feedback
is GP-UCB, introduced by Srinivas et al. (2010) in the con-
text of Gaussian process optimization.
W.l.o.g. consider zero-mean GP (0, k) priors and bounded
covariance k(xi,xi) ≤ κ2 for all xi ∈ A, and consider a set
of observations {(xs, ys)}ts=1 to have zero-mean Gaussian
noise (i.e., ηt ∼ N (0, ξ2)). Letting Xt = [x1, . . . ,xt]

T ∈
Rt×d be the matrix with all arms selected so far and
yt = [y1, . . . , yt]

T be the corresponding observations, the
posterior of the GP is still a GP and the mean and variance
of the function at a test point x are defined as

µt(x | Xt,yt)=kt(x)T(Kt + λI)−1yt, (1)

σ2
t (x | Xt)=k(x,x)− kt(x)T(Kt + λI)−1kt(x), (2)

where λ = ξ2, Kt ∈ Rt×t is the matrix[Kt]i,j = k(xi,xj)
constructed from all pairs xi,xj in Xt, and kt(x) =
[k(x1,x), . . . , k(xt,x)]T.
The GP-UCB algorithm is a Bayesian optimization algo-
rithm that uses a Gaussian process GP (0, k) as a prior.
Inspired by the optimism-in-face-of-uncertainty principle,
at each time step t, GP-UCB uses the GP’s posterior mean
and variance to compute the score ut of an arm xi

ut(xi) = µt(xi) + βtσt(xi), (3)

where we use the short-hand notation µt(·) = µ(· | Xt,yt)
and σt(·) = σ(· | Xt). Finally, GP-UCB chooses the maxi-

https://arxiv.org/abs/1903.05594

BKB

mizer xt+1 = arg maxxi∈A ut(xi) as the next arm to eval-
uate. According to the score ut, an arm x is likely to be
selected if it has high mean reward µt and high variance
σt, i.e., its estimated reward µt(x) is very uncertain. As a
result, selecting the arm xt+1 with the largest score trades
off between collecting (estimated) large reward (i.e., ex-
ploitation) and improving the accuracy of the posterior (i.e.,
exploration). The parameter βt balances between these two
objectives and it must be properly tuned to guarantee low
regret. Srinivas et al. (2010) proposes different approaches
to tune βt for different assumptions on f and A.

While GP-UCB is interpretable, simple to implement and
provably achieves low regret, it is computationally ex-
pensive. In particular, computing σt(x) has a complex-
ity at least Ω(t2) for the matrix-vector product (Kt−1 +
ξ2I)−1kt−1(x). Multiplying this for T iterations and A
arms results in an overall O(AT 3) computational cost,
which does not scale to large number of iterations T .

3. Budgeted Kernel Bandits
In this section, we introduce the BKB (budgeted kernel
bandit) algorithm, a novel efficient approximation of GP-
UCB, and we provide guarantees for its computational cost.

3.1. The algorithm
The main complexity bottleneck to compute the scores in
Equation 3 is due to the fact that after t steps, the posterior
GP is “supported” on all t previously seen arms, and as a
consequence computing ut requires computing a t dimen-
sional vector kt(x) and t × t matrix Kt respectively. To
avoid this dependency we restrict both kt and Kt to be
supported on a subset St of m arms. This approach is part
of the sparse Gaussian process approximation framework
(Quinonero-Candela et al., 2007), or equivalently a linear
bandit constrained on a subspace (Kuzborskij et al., 2019).

Approximated GP-UCB scores. Consider a subset of arm
St = {xi}mi=1 and denote by XSt ∈ Rm×d the matrix with
all arms in St as rows. Let KSt ∈ Rm×m be the matrix con-
structed by evaluating the covariance k between any two pair
of arms in St and kSt(x) = [k(x1,x), . . . , k(xm,x)]T. The
Nyström embedding zt(·) associated with subset St is de-
fined as the mapping1 zt(·) = (K

1/2
St)+kSt(·) : Rd → Rm,

where (·)+ indicates the pseudo-inverse. We denote with
Zt(Xt) = [zt(x1), . . . , zt(xt)]

T ∈ Rt×m the associated
matrix of points and we define Vt = Zt(Xt)

TZt(Xt) + λI.
Then, we approximate the posterior mean, variance, and

1Recall that in the exact version, kt(x) can be seen as an
embedding of any arm x into the space induced by all the t arms
selected so far, i.e. using all selected points as inducing points.

UCB of the function on an arm xi as

µ̃t(xi) =zt(xi)
TV−1t Zt(xi)

Tyt

σ̃2
t (xi) =

1

λ

(
k(xi,xi)− zt(xi)

TZt(Xt)
TZt(Xt)V

−1
t zt(xi)

)
ũt(xi) =µ̃t(xi) + β̃tσ̃t(xi), (4)

where β̃t is appropriately tuned to achieve small regret in
the theoretical analysis of Section 4. Finally, at each time
step t, BKB selects arm x̃t+1 = arg maxxi∈A ũt(xi).

Notice that in general, µ̃t and σ̃t do not correspond to any
GP posterior. Note that if we simply replace the k(xi,xi)
in the expression of σ̃2

t (xi) by its value in the Nyström
embedding, i.e., zt(xi)

Tzt(xi), then we would recover a
classical sparse GP approximations, the subset of regressors.
Using zt(xi)

Tzt(xi) is known to cause variance starvation,
i.e., it can severely underestimate the variance of a test point
xi when it is far from the points in St. Our formulation
of σ̃t is known in Bayesian literature as the deterministic
training conditional (DTC), where it is used as a heuristic
to prevent variance starvation. However, DTC does not
correspond to a GP since it violates consistency (Quinonero-
Candela et al., 2007). In this work, we justify this approach
rigorously, showing that it is crucial to prove approximation
guarantees necessary both for the optimization process and
for the construction of the set of inducing points.
Algorithm 1 BKB
Require: Arm set A, q, {βt}Tt=1

Ensure: Arm choices DT = {(x̃t, yt)}
Select uniformly at random x1 and observe y1
Initialize S1 = {x1}
for t = {1, . . . , T − 1} do

Compute µ̃t(xi) and σ̃2
t (xi) for all xi ∈ A

Select x̃t+1 = argmaxxi∈A ũt(xi)

for i = {1, . . . , t+ 1} do
Set p̃t+1,i = q · σ̃2

t (x̃i)
Draw qt+1,i ∼ Bernoulli(p̃t+1,i)
If qt+1 = 1 include x̃i in St+1

end for
end for

Choosing the inducing points. A critical aspect to effec-
tively keep the complexity of BKB low while preserving
regret guarantees is to carefully choose the inducing points
to include in the subset St. As the complexity of comput-
ing ũt scales with the size m of St, a smaller set gives a
faster algorithm. Conversely, the difference between µ̃t and
σ̃t and their exact counterparts depends on the accuracy of
the embedding zt, which increases with the size of the set
St. Moreover, even for a fixed m, the quality of the embed-
ding greatly depends on which inducing points are included.
Finally, we need to take into account two important aspects
of sequential optimization when choosing St. First, we
need to focus our approximation more on regions of A that
are relevant to the optimization problem (i.e., high-reward
arms). Second, as these regions change over time, we need
to keep adapting the composition and size of St accordingly.

BKB

We choose to construct St by randomly subsampling the set
of arms X̃t evaluated so far, where arms are included in St
with a probability proportional to their posterior variance σt.
We report the complete BKB algorithm in Alg. 1.

We initialize S1 = {x̃1} by selecting an arm uniformly
at random. At each step t, after selecting x̃t+1, we must
re-generate St to reflect the changes in X̃t+1. Ideally, we
would sample each arm in X̃t+1 proportionally to σ2

t+1, but
this would be too computationally expensive. For efficiency
we first approximate σ2

t+1 with σ2
t . This is equivalent to

ignoring the last arm and does not significantly impact the
accuracy. We can then replace σ2

t with σ̃2
t that was already

efficiently computed when constructing Equation 4. Finally,
given a parameter q ≥ 1, we set our approximate inclusion
probability as p̃t+1,i = qσ̃2

t (x̃s). The q parameter is used
to increase the inclusion probability in order to boost the
overall success probability of the approximation procedure
at the expense of a small increase in the size of St+1. Given
p̃t+1,i, we start from an empty St+1 and iterate over all
{x̃i}t+1

i=1, drawing qt+1,i from a Bernoulli distribution with
probability p̃t+1,i. If qt+1,i = 1, x̃i is included in St+1.

Notice that while constructing St based on σ2
t is a com-

mon heuristic in the sparse GP literature, it has not been
yet rigorously justified. However, we can show that the
GP posterior variance of an arm can be interpreted as its
λ-ridge leverage score (RLS) (Alaoui & Mahoney, 2015).
Leveraging existing analysis for RLS sampling and linear
algebra we provide both accuracy and efficiency guarantees
for this selection procedure.

3.2. Complexity analysis
Denote with mt = |St| the size of the set St at step t.
At each step, we first compute the embedding zt(xi) of all
arms inO(Am2

t +m3
t) time, which corresponds to one inver-

sion of K1/2
St and the matrix-vector product specific to each

arm. We then rebuild the matrix Vt from scratch using all
the arms observed so far, which requires O(min{t, A}m2

t)
time. Then the inverse V−1t is computed in O(m3

t) time.
We can now efficiently compute µ̃t, σ̃t, and ũt for all arms
inO(Am2

t) reusing the embeddings and V−1t . Finally, com-
puting all qt+1,i and St+1 takes O(min{t + 1, A}) using
the estimated variances σ̃2

t . As a result, the per-step com-
plexity is of order O

(
(A + min{t, A})m2

T

)
. Space-wise,

we only need to store the embedded arms and Vt matrix,
which takes at most O(AmT) space.

Bounding the size of ST . We provide a bound on mt,
which directly determines the computational cost of BKB.

Theorem 1. For a desired 0 < ε < 1, 0 < δ < 1, let α =
(1 + ε)/(1− ε). If we run BKB with q ≥ 6α log(4T/δ)/ε2

then with probability 1−δ, for all t ∈ [T] and for all x ∈ A

(a) σ2
t (x)/α ≤ σ̃2

t (x) ≤ ασ2
t (x)

(b) mt = |St| ≤ 3(1 + κ2/λ)αqdeff(λ, X̃t).

Computational complexity. Combining our complexity
analysis with Theorem 1 and the bound mT ≤ Õ(deff),
we obtain a Õ(T (A + min{t, A})d3eff) time complexity.
Whenever deff � T and T � A this is essentially a
quadratic O(T 2) runtime, a large improvement over the
quartic O(T 4) ≤ O(T 3A) runtime of GP-UCB.

4. Regret Analysis
We are now ready to present the second main contribution
of this paper, a bound on the regret achieved by BKB. To
prove our result we additionally assume that the reward
function f has bounded norm, i.e., ‖f‖2H = 〈f, f〉 < ∞.
We use an upper-bound ‖f‖H ≤ F to properly tune β̃t to
the “range” of the reward. If F is not known in advance,
standard guess-and-double techniques can be applied.
Theorem 2. Assume ‖f‖H ≤ F < ∞. For any desired
0 < ε < 1, 0 < δ < 1, 0 < λ, let α = (1 + ε)/(1− ε) and
q ≥ 6α log(4T/δ)/ε2. If we run BKB with

β̃t = 2ξ

√√√√α log(κ2t)

(
t∑

s=1

σ̃2
t (xs)

)
+ log(1

δ
) +

(
1 + 1√

1−ε

)√
λF,

then, with prob. 1− δ, BKB’s regret RT is bounded by

RT ≤ 2(2α)3/2
√
T
(
ξdeff(λ, X̃T) log(κ2T) + ξ log(1/δ)

+

√
λF 2deff(λ, X̃T) log(κ2T)

)
.

Theorem 2 shows that BKB achieves exactly the same regret
as (exact) GP-UCB up to small α constant and log(κ2T)
multiplicative factor.2 For instance, setting ε = 1/2 results
in a bound only 3 log(T) times larger than GP-UCB. At the
same time, the choice ε = 1/2 only accounts for a constant
factor 12 in the per-step computational complexity, which is
still dramatically reduced from t2A to d2effA. Moreover, it is
easy to show that deff(λ, X̃T) ≤ log det(KT /λ+ I) so any
bound on log det(KT /λ+I) available for GP-UCB can be
directly applied to BKB, e.g. up to an extra log(T) factor
we also match GP-UCB’s Õ(log(T)2d) rate for Gaussian
kernel, and Õ(d

√
T) for linear kernel.

Another interesting aspect of BKB is that computing the
trade-off parameter β̃t can be done efficiently. Previous
methods bounded this quantity with a loose (deterministic)
upper bound (e.g., O(log(T)d) for Gaussian kernels) to
avoid the large cost of computing log det(KT /λ+ I).

This regret guarantee is crucially achieved without requiring
an increasing accuracy in our approximation. One would

2Here we derive a frequentist regret bound and thus we compare
with the result of Chowdhury & Gopalan (2017) rather than the
original Bayesian analysis of Srinivas et al. (2010).

BKB

expect that to obtain a sublinear regret the error induced
by the approximation should decrease as 1/T . Instead, in
BKB the constants ε and λ that govern the accuracy level
are fixed and thus it is not possible to guarantee that µ̃t will
ever get close to µt everywhere. Adaptivity is key here:
we can afford the same approximation level at every step
because accuracy is actually increased only on a specific
part of the arm set. For example, if a suboptimal arm is
selected too often due to bad approximation, it will be even-
tually included in St. After the inclusion, the approximation
accuracy in the region of the suboptimal arm increases, and
it would not be selected anymore. As the set of inducing
points is updated fast enough, the impact of inaccurate ap-
proximations is limited in time, thus preventing large regret
to accumulate. Note that this is a significant divergence
from existing results. In particular approximation bounds
that are uniformly accurate for all xi ∈ A, such as those
obtained with Quadrature FF (Mutny & Krause, 2018), rely
on packing arguments. Due to the nature of packing, this
usually causes the runtime or regret to scale exponentially
in the input dimension d, and requires the kernel k to posses
specific structure, e.g. to be statonary. Our new analysis
avoids both of these problem.

Finally, we point out that the adaptivity of BKB allows
drawing an interesting connection between learning and
computational complexity. In fact, both the regret and
the computation of BKB scale with the log-determinant
and effective dimension of KT . As a result, if the
problem is difficult from a learning point of view (i.e.,
the regret is large because of large log-determinant), then
BKB automatically adapts the set St by including many
more inducing points to guarantee the level of accuracy
needed to solve the problem. Conversely, if the problem
is simple (i.e., small regret), then BKB can greatly re-
duce the size of St and achieve the derived level of accuracy.

5. Discussion
As the literature in Bayesian optimization is vast and a com-
plete review is out of the scope of this paper, we do not
compare to alternative GP acquisition function, such as GP-
EI or GP-PI, and we focus on approximation techniques
with theoretical guarantees. Similarly, we exclude scalable
variational inference based methods, even when their ap-
proximate posterior is provably accurate such as pF-DTC
(Huggins et al., 2019), since they only provide guarantees
for GP regression and not the harder optimization setting.
We also do not discuss KERNELUCB (Valko et al., 2013),
which has a tighter analysis than GP-UCB, since the algo-
rithm construction is not efficient in practice.

Infinite arm sets. Looking at the proof of Theorem 1, the
guarantees on ũt hold for allH, and in Theorem 2 we only
require that x̃t+1 = arg maxx∈Amaxw∈C̃t

φ(x)Tw is re-

turned. Therefore, the accuracy and regret guarantees hold
also for an infinite set of arms A. However, the search over
A can be difficult, and in the general case maximization of a
GP posterior is an NP-hard problem. We focused instead on
the easier case of finite sets, where enumeration is sufficient.
Note that this automatically introduces an Ω(A) runtime de-
pendency, which could be removed if the user can provide
an efficient method to solve the maximization problem on
a specific infinite set A. As an example, (Mutny & Krause,
2018) prove that a GP posterior approximated using QFF
can be optimized efficiently in low dimensions. Finally, note
that recomputing a new set St still requires min{A, t}d2eff
at each step. This represent a separate bottleneck in BKB
independent from the arm selection problem.

Linear bandit with matrix sketching. Our analysis is
closely related to CBRAP (Yu et al., 2017) and SO-
FUL (Kuzborskij et al., 2019). CBRAP uses Gaussian
projections to embed all arms in a lower dimensional space
for efficiency. Unfortunately their approach must either use
an embedded space at least Ω(T) large, which in most cases
would be even slower than exact OFUL, or it incurs linear
regret w.h.p. Another approach for Euclidean spaces based
on matrix approximation is introduced by Kuzborskij et al.
(2019). It uses Frequent Direction (Ghashami et al., 2016), a
method similar to incremental PCA, to embed the arms into
Rm, wherem is fixed in advance. They achieve a Õ(TAm2)

runtime, and Õ((1 + εm)3/2(d+m)
√
T) regret, where εm

is the sum of the d−m smallest eigenvalues. However, if
the tail does not decrease quickly enough this algorithm may
suffer linear regret. On the same task BKB does achieve a
Õ(d
√
T) regret, since it adaptively chooses the size of the

embedding. Computationally, directly instantiating BKB
to use a linear kernel would achieve a Õ(TAm2

t) runtime,
matching Kuzborskij et al. (2019)’s .

Approximate GP with RFF. Traditionally, RFF ap-
proaches have been popular to transform GP optimization
in a finite-dimensional problem and allow for scalability.
Unfortunately GP-UCB with traditional RFF is not low-
regret, as RFF are well known to suffer from variance star-
vation (Wang et al., 2018). Recently Mutny & Krause
(2018) proposed an alternative approach based on QFF,
a specialized approach to random features for stationary
kernels. They achieve the same regret rate as GP-UCB
and BKB, with a near-optimal O(TA log(T)d+1) runtime,
and present additional variations based on Thompson sam-
pling and exact posterior maximization. However Quadra-
ture based approaches apply to stationary kernel only, and
require to ε-cover A, hence they cannot escape an expo-
nential dependency on the dimensionality d. Conversely
BKB can be applied to any kernel function, and while not
specifically designed for this task it also achieve a close
Õ(TA log(T)3(d+1)) runtime. Moreover in practice the
size of ST can be much less than exponential in d.

BKB

References
Alaoui, A. E. and Mahoney, M. W. Fast randomized kernel

methods with statistical guarantees. In Neural Informa-
tion Processing Systems, 2015.

Chowdhury, S. R. and Gopalan, A. On kernelized multi-
armed bandits. In International Conference on Machine
Learning, pp. 844–853, 2017.

Ghashami, M., Liberty, E., Phillips, J. M., and Woodruff,
D. P. Frequent directions: Simple and deterministic ma-
trix sketching. SIAM Journal on Computing, 45(5):1762–
1792, 2016.

Huggins, J. H., Campbell, T., Kasprzak, M., and Broderick,
T. Scalable gaussian process inference with finite-data
mean and variance guarantees. International Conference
on Artificial Intelligence and Statistics, 2019.

Kuzborskij, I., Cella, L., and Cesa-Bianchi, N. Efficient
linear bandits through matrix sketching. In International
Conference on Artificial Intelligence and Statistics, 2019.

Mutny, M. and Krause, A. Efficient High Dimensional
Bayesian Optimization with Additivity and Quadrature
Fourier Features. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 31,
pp. 9019–9030. Curran Associates, Inc., 2018.

Quinonero-Candela, J., Rasmussen, C. E., and Williams,
C. K. Approximation methods for gaussian process re-
gression. Large-scale kernel machines, pp. 203–224,
2007.

Srinivas, N., Krause, A., Seeger, M., and Kakade, S. M.
Gaussian process optimization in the bandit setting: No
regret and experimental design. In International Confer-
ence on Machine Learning, pp. 1015–1022, 2010.

Valko, M., Korda, N., Munos, R., Flaounas, I., and Cris-
tianini, N. Finite-time analysis of kernelised contextual
bandits. In Proceedings of the Twenty-Ninth Conference
on Uncertainty in Artificial Intelligence, pp. 654–663.
AUAI Press, 2013.

Wang, Z., Gehring, C., Kohli, P., and Jegelka, S. Batched
large-scale bayesian optimization in high-dimensional
spaces. In International Conference on Artificial Intelli-
gence and Statistics, pp. 745–754, 2018.

Yu, X., Lyu, M. R., and King, I. CBRAP: Contextual bandits
with random projection. In AAAI Conference on Artificial
Intelligence, 2017.

