
Seq2Slate: Re-ranking and Slate Optimization with RNNs

Irwan Bello 1 Sayali Kulkarni 1 Sagar Jain 1 Craig Boutilier 1 Ed Chi 1 Elad Eban 1 Xiyang Luo 1

Alan Mackey 1 Ofer Meshi 1

Abstract
Ranking is a central task in machine learning and
information retrieval. In this task, it is especially
important to present the user with a slate of items
that is appealing as a whole. This in turn requires
taking into account interactions between items,
since intuitively, placing an item on the slate af-
fects the decision of which other items should be
placed alongside it. In this work, we propose a
sequence-to-sequence model for ranking called
seq2slate. At each step, the model predicts the
next “best” item to place on the slate given the
items already selected. The sequential nature of
the model allows complex dependencies between
the items to be captured directly in a flexible and
scalable way. We show how to learn the model
end-to-end from weak supervision in the form of
easily obtained click-through data. We further
demonstrate the usefulness of our approach in
experiments on standard ranking benchmarks as
well as in a real-world recommendation system.

1. Introduction
Ranking a set of candidate items is a central task in ma-
chine learning and information retrieval. Many existing
ranking systems are based on pointwise estimators, where
the model assigns a score to each item in a candidate set and
the resulting slate is obtained by sorting the list according
to item scores (Liu et al., 2009). Such models are usually
trained from click-through data to optimize an appropriate
loss function (Joachims, 2002). This simple approach is
computationally attractive as it only requires a sort oper-
ation over the candidate set at test (or serving) time, and
can therefore scale to large problems. On the other hand,
in terms of modeling, pointwise rankers cannot easily ex-
press dependencies between ranked items. In particular,
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the score of an item (e.g., its probability of being clicked)
often depends on the other items in the slate and their joint
placement. For example, in the common case where only a
few highly ranked items get the user’s attention, it may be
better to present a diverse set of items at the top positions
of the slate in order to cover a wider range of user interests.

A significant amount of work on learning-to-rank does con-
sider interactions between ranked items when training the
model. In pairwise approaches a classifier is trained to de-
termine which item should be ranked first within a pair of
items (e.g., Herbrich et al., 1999; Joachims, 2002; Burges
et al., 2005). Similarly, in listwise approaches the loss de-
pends on the full permutation of items (e.g., Cao et al., 2007;
Yue et al., 2007). Although these losses consider inter-item
dependencies, the ranking function itself is pointwise, so at
inference time the model still assigns a score to each item
which does not depend directly on the other items (i.e., an
item’s score will not change if it is placed in a different set).

There has been some work on trying to capture interac-
tions between items in the ranking scores themselves (e.g.,
Qin et al., 2008; 2009; Zhu et al., 2014; Rosenfeld et al.,
2014; Dokania et al., 2014; Borodin et al., 2017; Ai et al.,
2018b). Such approaches can, for example, encourage a
pair of items to appear next to (or far from) each other in
the resulting ranking. Approaches of this type often as-
sume that the relationship between items takes a simple
form (e.g., submodular (Borodin et al., 2017)) in order to
obtain tractable inference and learning algorithms. Unfortu-
nately, this comes at the expense of the model’s expressive
power. Alternatively, greedy or approximate procedures
can be used at inference time, though this often introduces
approximation errors, and many of these procedures are still
computationally expensive (e.g., Rosenfeld et al., 2014).

More recently, neural architectures have been used to ex-
tract representations of the entire set of candidate items for
ranking, thereby taking into consideration all candidates
when assigning a score for each item (Mottini & Acuna-
Agost, 2017; Ai et al., 2018a). This is done by an encoder
which processes all candidate items sequentially and pro-
duces a compact representation, followed by a scoring step
in which pointwise scores are assigned based on this joint
representation. This approach can in principle model rich
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dependencies between ranked items, however its modeling
requirements are quite strong. In particular, all the infor-
mation about interactions between items needs to be stored
in the intermediate compact representation and extracted in
one-shot when scoring (decoding).

Instead, in this paper we propose a different approach by
applying sequential decoding, which assigns item scores
conditioned on previously chosen items. Our decoding
procedure lets the score of an item change depending on
the items already placed in previous positions. This allows
the model to account for high-order interactions in a natural
and scalable manner. Moreover, our approach is purely data-
driven so the model can adapt to various types of inter-item
dependencies, for example, negative dependence – where
items decrease each other’s appeal. We apply a sequence-
to-sequence (seq2seq) model (Sutskever et al., 2014) to the
ranking task, where the input is the list of candidate items
and the output is the resulting ordering. Since the output
sequence corresponds to ranked items on the slate, we call
this approach sequence-to-slate, or in short seq2slate.

To address the seq2seq problem, we build on the recent suc-
cess of recurrent neural networks (RNNs) (e.g., Sutskever
et al., 2014). This allows us to use a deep model to capture
rich dependencies between ranked items, while keeping the
computational cost of inference manageable. More specifi-
cally, we use pointer networks, which are seq2seq models
with an attention mechanism for pointing at positions in the
input (Vinyals et al., 2015). We show how to train the net-
work end-to-end from click-through data to optimize several
commonly used ranking measures. Finally, we demonstrate
the usefulness of the proposed approach in experiments on
benchmark and real-world data.

2. Ranking as Sequence Prediction
The ranking problem is that of computing a ranking of a
set of items (or ordered list or slate) given some query or
context. We formalize the problem as follows. Assume a
set of n items, each represented by a feature vector xi ∈
Rm (which may depend on a query or context).1 Let π ∈
Π denote a permutation of the items, where each πj ∈
{1, . . . , n} denotes the index of the item in position j, for
example, π = (3, 1, 2, 4) for n = 4. Our goal is to predict
an “optimal” output ranking π given the input items x.

In the seq2seq framework, the probability of an output per-
mutation, or slate, given the inputs is expressed as a product
of conditional probabilities according to the chain rule:

p(π|x) =

n∏
j=1

p(πj |π1, . . . , πj−1, x) , (1)

1xi can represent either raw inputs or learned embeddings.

x₁ x₂ x₃ x₄ x₅ go x₃ x₂ x₄ x₁ x₅
input sequence reranked sequence

Figure 1. The seq2slate pointer network architecture for ranking.

This expression is completely general and does not make any
conditional independence assumptions. In our case, the con-
ditional p(πj |π<j , x) ∈ ∆n (a point in the n-dimensional
simplex) models the probability of any item being placed
at the j’th position in the ranking given the items already
placed at previous positions. For brevity, we have denoted
the prefix permutation π<j = (π1, . . . , πj−1). Therefore,
this conditional can exactly capture all high-order depen-
dencies between items in the ranked list, including those
due to diversity, similarity or other interactions.

Pointer-Network Architecture for Ranking

We employ the pointer-network architecture of Vinyals et al.
(2015) to model the conditional p(πj |π<j , x). A pointer
network uses non-parametric softmax modules, akin to the
attention mechanism of Bahdanau et al. (2015), and learns
to point to items in its input sequence rather than predicting
an index from a fixed-sized vocabulary.

Our seq2slate model, illustrated in Fig. 1, consists of two
recurrent neural networks (RNNs): an encoder and a de-
coder, both of which use Long Short-Term Memory (LSTM)
cells (Hochreiter & Schmidhuber, 1997). At each encoding
step i ≤ n, the encoder RNN reads the input vector xi and
outputs a ρ-dimensional vector ei, thus transforming the
input sequence {xi}ni=1 into a sequence of latent memory
states {ei}ni=1. These latent states can be seen as a compact
representation of the entire set of candidate items. At each
decoding step j, the decoder RNN outputs a ρ-dimensional
vector dj which is used as a query in the attention function.
The attention function takes as input the query dj ∈ Rρ and
the set of latent memory states computed by the encoder
{ei}ni=1 and produces a probability distribution over the
next item to include in the output sequence as follows:

sji = v> tanh (Wenc · ei +Wdec · dj) (2)

pθ(πj = i|π<j , x) ≡ pji =

{
es
j
i /

∑
k/∈π<j e

s
j
k if i /∈ π<j

0 if i ∈ π<j
.

Here Wenc ,Wdec ∈ Rρ×ρ and v ∈ Rρ are learned parame-
ters in our network, denoted collectively by parameter vector
θ, and sji are scores associated with placing item i in posi-
tion j. The probability pji = pθ(πj = i|π<j , x), is obtained
via a softmax over the remaining items and represents the
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degree to which the model points to input i at decoding
step j. In order to output a permutation, the probabilities
pji are set to 0 for items i that already appear on the slate.
Once the next item πj is selected, typically greedily or by
sampling (see below), its embedding xπj is fed as input to
the next decoder step. This way the decoder states hold
information on the items already placed on the slate. The
input to the first decoder step is a learned m-dimensional
vector, denoted as ‘go’ in Fig. 1.

Previous studies have shown that the order in which the
input is processed can significantly affect the performance
of sequential models (Vinyals et al., 2016; Nam et al., 2017;
Ai et al., 2018a). For this reason, we will assume here the
availability of a base (or “production”) ranker with which the
input sequence is ordered (e.g., a simple pointwise method
that ignores the interactions we seek to model), and view
the output of our model as a re-ranking of the items.

3. Training with Click-Through Data
We now turn to the task of training the seq2slate model from
data. A typical approach to learning in ranking systems is
to run an existing ranker “in the wild” and log click-through
data, which are then used to train an improved ranking
model. This type of training data is relatively inexpensive to
obtain, in contrast to human-curated labels such as relevance
scores, ratings, or full rankings (Joachims, 2002).

Formally, each training example consists of a sequence of
items x = {x1, . . . , xn}, with xi ∈ Rm and binary labels
y = (y1, . . . , yn), with yi ∈ {0, 1}, representing user feed-
back (e.g., click/no-click). Our goal is to learn the parame-
ters θ of pθ(πj |π<j , x) (Eq. (2)) such that permutations π
corresponding to “good” rankings are assigned high proba-
bilities. Various performance measuresR(π, y) can be used
to evaluate the quality of a permutation π given the labels y.
Generally speaking, permutations where the positive labels
rank higher are considered better.

In the standard seq2seq setting, models are trained to max-
imize the likelihood of a target sequence of tokens given
the input, which can be done by maximizing the likelihood
of each target token given the previous target tokens using
Eq. (1). Unfortunately, this approach cannot be applied in
our setting since it requires ground-truth permutations while
we only have access to weak supervision in the form of
labels y (e.g., clicks).

3.1. Training Using REINFORCE

One viable approach, which has been applied success-
fully in related tasks (Bello et al., 2017; Zhong et al.,
2017), is to use reinforcement learning (RL) to directly
optimize for the ranking measure R(π, y). In this setup,
the objective is to maximize the expected ranking met-
ric obtained by sequences sampled from our model:

maxθ Eπ∼pθ(.|x)[R(π, y)]. Policy gradients and stochastic
gradient ascent can be used to optimize θ. The gradient is
formulated using the REINFORCE update (Williams, 1992):

∇θEπ∼pθ(.|x)[R(π, y)] = Eπ∼pθ(.|x)
[
R(π, y)∇θ log pθ(π | x)

]
,

which can be approximated via Monte-Carlo sampling.

3.2. Supervised Training

Policy gradient methods like REINFORCE are known to
induce challenging optimization problems and can suffer
from sample inefficiency and difficult credit assignment. As
an alternative, we propose supervised learning using the
labels y. In particular, rather than waiting until the end of
the output sequence as in RL, we can give feedback to the
model at each decoder step.

Consider the first step, and recall that the model assigns a
score si to each item in the input (see Eq. (2)); to simplify
notation we omit the position superscript j for now. Letting
s = (s1, . . . , sn), we define a per-step loss `(s, y) which
essentially acts as a multi-label classification loss with labels
y as ground truth. Any ranking loss can be used for `, here
we employ two simple choices, cross-entropy and hinge:

`xent(s, y) = −
∑
i

ŷi log pi (3)

`hinge(s, y) = max{0, 1− min
i:yi=1

si + max
j:yj=0

sj} ,

where ŷi = yi/
∑
j yj , and pi is a softmax of s, as in Eq. (2).

We define the sequence loss for a fixed permutation π as:

Lπ(S, y) =

n∑
j=1

`π<j (s
j , y) , (4)

where S = {sj}nj=1 are the model scores (see Eq. (2)),
and each sj = (sj1, . . . , s

j
n) is the item-score vector for

position j. In the sequel we will also use the abbrevia-
tion: Lπ(θ) ≡ Lπ(S(θ), y). Importantly, the per-step loss
`π<j (s

j , y) depends only on the indices in sj and y which
are not in the prefix π<j (cf. Eq. (3)).

Using the definition of the sequence loss above, our goal
is to optimize the expected loss: minθ Eπ∼pθ(·|x)[Lπ(θ)],
which corresponds to sampling the permutation π according
to the model. Notice that this expected loss is differentiable
everywhere since both pθ(π|x) and Lπ(θ) are differentiable
for any permutation π. In this case, the gradient is formu-
lated as (see also Schulman et al., 2015, Eq. (4)):

∇θEπ[Lπ(θ)] = Eπ∼pθ(·|x) [Lπ(θ) · ∇θ log pθ(π|x) +∇θLπ(θ)] ,

which again can be approximated from samples.
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Ranker Yahoo Web30k
MAP NDCG@5 NDCG10 MAP NDCG@5 NDCG@10

seq2slate 0.67 0.69 0.75 0.51 0.53 0.59
AdaRank 0.58 0.61 0.69 0.37 0.38 0.46

Coordinate Ascent 0.49 0.51 0.59 0.31 0.33 0.39
LambdaMART 0.58 0.61 0.69 0.42 0.46 0.52

ListNet 0.49 0.51 0.59 0.43 0.47 0.53
MART 0.58 0.60 0.68 0.39 0.42 0.48

Random Forests 0.54 0.57 0.65 0.36 0.39 0.45
RankBoost 0.50 0.52 0.60 0.24 0.25 0.30
RankNet 0.54 0.57 0.64 0.43 0.47 0.53

Table 1. Performance of seq2slate and other baselines on data generated with diverse-clicks.

4. Experimental Results
We evaluate the performance of our seq2slate model on a
collection of ranking tasks. In Section 4.1 we use learning-
to-rank benchmark data to study the behavior of the model.
We then apply our approach to a large-scale commercial rec-
ommendation system and report the results in Section 4.2.

4.1. Learning-to-Rank Benchmarks

We conduct experiments using two learning-to-rank datasets,
the Yahoo Learning to Rank Challenge data (set 1), and the
Microsoft Web30k dataset.We adapt the procedure proposed
by Joachims et al. (2017) to generate click data. A base
ranker is first trained from the raw data. The base ranking
is then used to generate training data by simulating a user
“cascading” through the results and clicking on items (for
full details see Joachims et al. (2017)). In order to intro-
duce high-order dependencies, we augment the procedure in
Joachims et al. (2017) by generating clicks only if an item
is not too similar to previously clicked items (i.e, diverse
enough). Similarity is defined as being in the smallest q per-
centile (i.e., q = 0.5 is the median) of Euclidean distances
between pairs of feature vectors within the same ranking
instance: Dij = ‖xi − xj‖.
Using the generated training data, we train both our
seq2slate model and baseline rankers from the RankLib
package. The results in Table 1 show that seq2slate signifi-
cantly outperforms all the baselines, suggesting that it can
better capture and exploit the dependencies between items
in the data.

4.2. Real-World Data

We also apply seq2slate to a ranking problem from a
large-scale commercial recommendation system. We train
the model using massive click-through logs (comprising
roughly O(107) instances). The data has item sets of vary-
ing size, with an average n of 10.24 items per example. We
learn embeddings of the raw inputs as part of training.

Table 2 shows the performance of seq2slate compared to the

Ranker MAP NDCG@5 NDCG@10 rank-gain
one-step decoder +26.79% +10.69% +40.67% 0.83

seq2slate +31.32% +14.47% +45.77% 1.087

Table 2. Performance compared to a competitive base production
ranker on real data.
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Figure 2. Difference in CTR per position between a seq2slate
model and a base production ranker in a live experiment.

production base ranker on test data (of roughly the same size
as the training data). We also compare to a computationally
cheaper one-step decoder, which outputs a single vector
p1 = pθ(π1 = ·|x) (see Eq. (2)), from which π is obtained
by sorting—similar to the approach taken in (Mottini &
Acuna-Agost, 2017; Ai et al., 2018a)). Significant gains are
observed in all performance metrics, with sequential decod-
ing outperforming the one-step decoder. This suggests that
sequential decoding may more faithfully capture complex
dependencies between the items.

Finally, we let the learned seq2slate model run in a live
experiment (A/B testing) and re-rank the result of the current
production recommender system. We compute the click-
through rate (CTR) in each position (#clicks/#examples)
for seq2slate. The production base ranker serves traffic
outside the experiment, and we compute CTR for this traffic
as well. Fig. 2 shows the difference in CTR per position,
indicating that seq2slate has significantly higher CTR in the
top positions. This suggests that seq2slate indeed places
items that are likely to be chosen higher in the ranking.

https://webscope.sandbox.yahoo.com/catalog.php?datatype=c
https://www.microsoft.com/en-us/research/project/mslr/
https://sourceforge.net/p/lemur/wiki/RankLib/
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