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Abstract
We study the complexity of sampling from a distri-
bution over all index subsets of the set {1, ..., n}
with the probability of a subset S proportional
to the determinant of the submatrix LS of some
n× n p.s.d. matrix L, where LS corresponds to
the entries of L indexed by S. Known as a de-
terminantal point process (DPP), this distribution
is widely used in machine learning to induce di-
versity in subset selection. In practice, we often
wish to sample multiple subsets S with small ex-
pected size k = E[|S|] � n from a very large
matrix L, so it is important to minimize the pre-
processing cost of the procedure (performed once)
as well as the sampling cost (performed repeat-
edly). To that end, we propose a new algorithm
which, given access to L, samples exactly from
a DPP while satisfying the following two prop-
erties: (1) its preprocessing cost is n · poly(k)
(sublinear in the size of L) and (2) its sampling
cost is poly(k) (independent of the size of L).
Prior to this work, state-of-the-art exact samplers
required O(n3) preprocessing time and sampling
time linear in n or dependent on L’s spectrum.

1. Introduction
Given a positive semi-definite (psd) n × n matrix L, a
determinantal point process DPP(L) (also known as an
L-ensemble) is a distribution over all 2n index subsets
S ⊆ {1, . . . , n} such that

Pr(S) =
det(LS)

det(I + L)
,
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where LS denotes the |S|×|S| submatrix of L with rows and
columns indexed by S. Determinantal point processes natu-
rally appear accross many scientific domains (Macchi, 1975;
Bardenet et al., 2017; Guenoche, 1983), while also being
widely used as a tool in machine learning and recommender
systems (Kulesza & Taskar, 2012) for inducing diversity in
subset selection and as a variance reduction technique. In
this context, we often wish to efficiently produce many DPP
samples of small expected size k := E[|S|] given a large
matrix L. Sometimes the distribution is restricted to subsets
of fixed size |S| = k � n, denoted k-DPP(L). Hough
et al. (2006) gave an algorithm for drawing exact samples
from DPP(L), later adapted to k-DPP(L) by Kulesza &
Taskar (2011), which can be implemented to run in polyno-
mial time. In many applications, however, sampling is still
a computational bottleneck because the algorithm requires
performing the eigendecomposition of matrix L at the cost
of O(n3). In addition to that initial cost, producing many
independent samples S1, S2, . . . at high frequency poses a
challenge because the cost of each sample is at least linear
in n. Many alternative algorithms have been considered for
both DPPs and k-DPPs to reduce the computational cost
of preprocessing and/or sampling, including many approx-
imate and heuristic approaches. In this paper we present
an algorithm which samples exactly from a DPP with the
initial preprocessing cost sublinear in the size of L and the
sampling cost independent of the size of L.

Theorem 1 For a psd n × n matrix L, let S1, S2, . . . be
i.i.d. random sets from DPP(L). Then, there is an algorithm
which, given access to L, returns:

a) the first subset, S1, in: n · poly(k) polylog(n) time,

b) each subsequent Si in: poly(k) time.

We refer to this algorithm as the very fast and exact DPP
sampler, or DPP-VFX. Table 1 compares DPP-VFX with
other DPP and k-DPP sampling algorithms. In this compar-
ison we focus on the methods that provide strong theoret-
ical accuracy guarantees (see discussion in Section 1). As
seen from the table, our algorithm is the first exact sampler
to achieve sublinear overall runtime. Only the approxi-
mate MCMC sampler of Anari et al. (2016) matches our
n·poly(k) complexity (albeit for a k-DPP instead of a DPP),
but for this method every next sample is equally expensive,
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Exact Variant First sample Subsequent samples
Hough et al. (2006) DPP n3 nk2

Kulesza & Taskar (2011) k-DPP n3 nk2

Anari et al. (2016) x k-DPP n · poly(k) n · poly(k)
Li et al. (2016b) x DPP n2 · poly(k) n2 · poly(k)

Launay et al. (2018) DPP n3 poly(k · (1 + ‖L‖))
Dereziński (2019) DPP n3 poly(rank(L))

DPP-VFX (this paper) DPP n · poly(k) poly(k)

Table 1: Comparison of DPP and k-DPP algorithms using the L-ensemble representation. For a DPP, k denotes the expected
subset size. Note that k ≤ rank(L) ≤ n. We omit log-terms for clarity.

making it less practical when repeated sampling is needed.
In fact, to our knowledge, no other exact or approximate
method (with rigorous approximation guarantees) achieves
poly(k) sampling time of this paper. Our approach draws
on the ideas of Dereziński (2019), particularly the notion
of regularized determinantal point processes (R-DPP, dis-
cussed in Section 2). However, despite similarities, their
algorithm does not come close to the time complexity of our
approach except for some corner cases when the ensemble
matrix L has extremely low rank.

Related work Prior to our work, fast exact sampling from
generic DPPs has been considered out of reach. The first
procedure to sample general DPPs was given by Hough
et al. (2006) and even most recent exact refinements (Launay
et al., 2018; Dereziński, 2019; Poulson, 2019), when the
DPP is represented in the form of an L-ensemble, require
preprocessing that amounts to an expensive n × n matrix
diagonalization at the cost O(n3), which is shown as the
first-sample complexity column in Table 1.

Nonetheless, there are well-known samplers for very spe-
cific DPPs that are both fast and exact, for instance for
sampling uniform spanning trees (Aldous, 1990; Broder,
1989; Propp & Wilson, 1998), which leaves the possibility
of a more generic fast sampler open. Since the sampling
from DPPs has several practical large scale machine learn-
ing applications (Kulesza & Taskar, 2012), there are now a
number of methods known to be able to sample from a DPP
approximately, outlined in the following paragraphs.

As DPPs can be specified by kernels (L-kernels or K-
kernels), a natural approximation strategy is to resort to
low-rank approximations (Kulesza & Taskar, 2011; Gillen-
water et al., 2012; Affandi et al., 2013; Li et al., 2016a).
For example, Affandi et al. (2013) provides approximate
guarantee for the probability of any subset being sampled
as a function of eigengaps of the L-kernel. Next, Li et al.
(2016a) construct coresets approximating a given k-DPP
and then use them for sampling. In their Section 4.1, Li
et al. (2016a) show in which cases we can hope for a good
approximation. These guarantees become tight if these ap-
proximations (Nyström subspace, coresets) are aligned with

data. In our work, we aim for an adaptive approach that is
able to provide a good approximation for any DPP.

The second class of approaches are based on Markov chain
Monte-Carlo (Metropolis & Ulam, 1949) techniques (Kang,
2013; Rebeschini & Karbasi, 2015; Anari et al., 2016; Li
et al., 2016b; Gautier et al., 2017). There are known poly-
nomial bounds on the mixing rates (Diaconis & Stroock,
1991) of MCMC chains with arbitrary DPPs as their limit-
ing measure. In particular, Anari et al. (2016) showed them
for cardinality-constrained DPPs and Li et al. (2016b) for
the general case. The two chains have mixing times which
are, respectively, linear and quadratic in n (see Table 1).
Unfortunately, for any subsequent sample we need to wait
until the chain mixes again.

Neither the known low-rank approximations or the known
MCMC methods are able to provide samples that are exactly
distributed (also called perfect sampling) according to a DPP.
This is not surprising as having scalable and exact sampling
is very challenging in general. For example, methods based
on rejection sampling are always exact, but they typically do
not scale with the dimension and are adversely affected by
the spikes in the distribution (Erraqabi et al., 2016), result-
ing in high rejection rate and inefficiency. Surprisingly, our
method is based on both low-rank approximation (a source
of inaccuracy) and rejection sampling (a common source of
inefficiency). In the following section, we show how to ob-
tain a perfect DPP sampler from a Nyström approximation
of the L-kernel. Then, to guarantee efficiency, in Section 3
we bound the number of rejections, which is possible thanks
to the use of intermediate downsampling.

2. Exact sampling via Nyström approximation
Our method is based on a technique developed recently by
Dereziński et al. (2018; 2019), and extended by Dereziński
(2019). In this approach, we carefully downsample the in-
dex set [n] = {1, ..., n} to a sample σ = (σ1, ..., σt) ∈ [n]t

that is small but still sufficiently larger than the expected
target size k, and then run a DPP on σ. As the downsam-
pling distribution we use a regularized determinantal point
process (R-DPP), proposed by Dereziński (2019), which (in-
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formally) samples σ with probability Pr(σ) ∼ det(I+ L̃σ),
where L̃ is a rescaled version of L. Overall, the approach is
described in the diagram below, where |S| ≤ t� n:

{1, ..., n} σ∼R-DPP−→ (σ1, ..., σt)
S̃∼DPP−→ S = {σi : i ∈ S̃}.

The DPP algorithm proposed by Dereziński (2019) follows
the same diagram, however it requires that the size of the
intermediate sample σ be Ω(rank(L) · k). Therefore, this
method provides improvement only when L can be decom-
posed as XX> for some n× r matrix X, with k ≤ r � n.
Even in this special case, the sampling time of their algo-
rithm can only match ours when r = O(k). However, in
practice, matrix L is often only approximately low-rank,
i.e., it exhibits some form of eigenvalue decay but it does
not have a low-rank factorization. In this case, the results
of Dereziński (2019) are vacuous in that sampling would
take Ω(n3). We propose a different R-DPP implementation
(see Algorithm 1) where the expected size of σ is O(k2).
To make the algorithm efficient, we draw on the connec-
tions between determinantal point processes, ridge leverage
scores and Nyström approximations.

Definition 1 Given a psd matrix L, its ith λ-ridge leverage
score (RLS) τi(λ) is the ith diagonal entry of L(λI + L)−1.
The λ-effective dimension is defined as deff(λ) =

∑
i τi(λ).

An important connection between RLSs and DPPs is that
when S ∼ DPP(L) the marginal probability of index i
being sampled into S is equal to the ith 1-ridge leverage
score of L, and the expected size k of S is equal to the
1-effective dimension:

Pr(i ∈ S) =
[
L(I + L)−1

]
ii

= τi(1),

k = E
[
|S|
]

= tr
(
L(I + L)−1

)
= deff(1).

Intuitively, if the marginal probability of i is high then
this index should also likely make it into the intermedi-
ate sample σ. This suggests that i.i.d. sampling the in-
dices σ1, ..., σt proportionally to 1-ridge leverage scores,
i.e. Pr(σ1 = i) ∝ τi(1), should serve as a reasonable and
cheap heuristic for constructing σ. In fact, we can show that
this i.i.d. distribution can be easily corrected by rejection
sampling to become the R-DPP that we need. Computing
ridge leverage scores exactly costs O(n3), so instead we
compute their approximations (denoted li in Algorithm 1)
by first constructing a Nyström approximation of L.

Definition 2 Let L be a psd matrix and C a subset with size
m = |C|. Then the Nyström approximation of L based on
C is the n× n matrix L̂ := (LC,I)>L+

CLC,I .

Here, LC,I denotes an m × n matrix consisting of (en-
tire) rows of L indexed by C and (·)+ denotes the Moore-
Penrose pseudoinverse. Since we use rejection sampling
to achieve the right intermediate distribution, the correct-
ness of our algorithm does not depend on which Nyström
approximation is chosen.

Theorem 2 Given a psd matrix L, any of its Nyström ap-
proximations L̂, and q > 0, Alg. 1 returns S ∼ DPP(L).

The key part of the proof involves showing that the ac-
ceptance probability in line 4 is bounded by 1. Here, we
obtain a considerably tighter bound than the one achieved by
Dereziński (2019), which allows us to use a much smaller in-
termediate sample σ. The bound implies that σ is distributed
according to an R-DPP, which is sufficient to guarantee the
exactness of the algorithm.

Remarkably, Theorem 2 requires no assumptions on the
subset C that is used to produce the Nyström approximation
L̂. However, the choice of C greatly influences the com-
putational cost of the sampling through the rank of L̂ and
the probability of rejecting a sample. Since rank(L̂) = |C|,
operations such as multiplication and inversion involving
the Nyström approximation will scale with m, and therefore
a small subset increases efficiency. However if L̂ is too
different from L the probability of rejecting the sample will
be very high, and the algorithm inefficient. In this case a
slightly larger subset could improve accuracy and accep-
tance rate without increasing the cost of handling L̂ by too
much. Therefore, subset C has to be selected so that it is
both small and accurately represents the matrix L. Here, we
once again rely on ridge leverage score sampling which has
been effectively used for obtaining good Nyström approx-
imations in a number of prior works (Alaoui & Mahoney,
2015; Calandriello et al., 2017; Rudi et al., 2018).

Algorithm 1 DPP-VFX sampler for S ∼ DPP(L)

input:
L ∈ Rn×n and its Nyström approximation L̂, any q > 0

li =
[
(L− L̂) + L̂(I + L̂)−1

]
ii
≈ Pr(i ∈ S),

s =
∑
i li, z = tr

(
L̂(I + L̂)−1

)
, L̃ = s

q

[
1√
lilj

Lij
]
ij

1: repeat
2: sample t ∼ Poisson(q es/q)

3: sample σ1, . . . , σt
i.i.d.∼ ( l1s , . . . , lns ),

4: sample Acc ∼Bernoulli
(

ez det(I+L̃σ)

ets/q det(I+L̂)

)
5: until Acc = true
6: sample S̃ ∼ DPP

(
L̃σ
)

7: return S = {σi : i∈ S̃}

3. Conditions for fast sampling
The complexity cost of Algorithm 1 can be roughly sum-
marized as follows: we pay a large one-time cost to pre-
compute L̂ and all its associated quantities, and then we
pay a smaller cost in the rejection sampling scheme which
must be multiplied by the number of times we repeat the
loop until acceptance. We first show that if the approxi-
mate L̂ is sufficiently close to L̂, then we will exit the loop
with high probability. We then analyze how accurate the



Exact sampling of determinantal point processes with sublinear time preprocessing

precomputing step needs to be to satisfy this condition.

Theorem 3 If the Nyström approximation L̂ satisfies:

tr
(
L(I + L)−1L− L̂(I + L)−1L̂

)
≤ 1,

and q = max{s2, s}, then Pr(Acc = true) ≥ e−2. There-
fore, with probability 1− δ Algorithm 1 exits the rejection
sampling loop after at most O(log 1

δ ) iterations and, af-
ter precomputing all of the inputs, the time complexity of
Algorithm 1 is O

(
k6 log 1

δ + log4 1
δ

)
.

The above theorem essentially states that as long as inter-
mediate sample size (controlled by q) is sufficiently large
and the approximation error of L̂ is sufficiently small, then
the acceptance probability in line 4 is constant. Therefore,
the dominant operations in Algorithm 1, i.e., computing the
determinant of I + L̃σ and sampling from DPP(L̃σ), need
to be performed a constant number of times. Both of them
take O(q3) = O(k6) time by using standard techniques.

All that is left now is to control the cost of the precomputa-
tion phase. We will separate the analysis into two steps: how
much it costs to choose L̂ to satisfy the accuracy condition,
and how much it costs to compute everything else given L̂.

Lemma 1 Construct L̂ by sampling m = O(k3 lognδ )
columns proportionally to their RLS. Then, with probability
1− δ, L̂ satisfies Theorem 3.

There exist many algorithms to sample columns proportion-
ally to their RLS. For example, we can take the following
result for the BLESS algorithm from Rudi et al. (2018).

Proposition 1 (Rudi et al., 2018) There exists an algo-
rithm that with probability 1−δ samplesm columns propor-
tionally to their RLS in timeO(nk2 log2 n

δ +k3 log4 n
δ +m).

Lemma 2 Given L and an arbitrary L̂ of rank m, comput-
ing li, s, z, and L̃ requires O(nm2 +m3) time.

Combining these results we fully bound DPP-VFX’s cost.

Theorem 1 (restated) For a psd n × n matrix L, let
S1, S2, . . . be i.i.d. random sets from DPP(L). Denote
with L̂ a Nyström approximation of L obtained by sampling
m = O(k3 log n

δ ) of its columns proportionally to their
RLS. Then, with probability 1− δ, Algorithm 1 returns:

a) S1 in O(nk6 log2 n
δ + k9 log3 n

δ + k3 log4 n
δ ) time,

b) then, S2 in O
(
k6 log 1

δ + log4 1
δ

)
time.

Due to the nature of rejection sampling, as long as we exit
the loop, i.e.,, we accept the sample, the output of Algo-
rithm 1 is guaranteed to follow the DPP distribution for
any value of m. In Theorem 1 we set m = O(k3 log n

δ )
to satisfy Theorem 3 and guarantee a constant acceptance
probability in the rejection sampling loop, but this might not
be necessary or even desirable in practice. Experimentally,
much smaller values of m, starting from m = O(k log n

δ )
seem to be sufficient to accept the sample, while at the same
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Figure 1: Runtime in seconds versus size of the dataset n.

time a smaller m greatly reduces the preprocessing costs.
In general, we recommend to separate Algorithm 1 in three
phases. First compute an accurate estimate of the RLS using
off-the-shelf algorithms in O(nk2 log2 n

δ + k3 log4 n
δ ) time.

Then sample a small number m of columns to construct an
explorative L̂, and try to run Algorithm 1. If the rejection
sampling loop does not terminate sufficiently fast, then we
can re-use the RLS estimates to compute a more accurate
L̂ for a larger m. Using a simple doubling schedule for m,
this procedure maintains its asymptotic complexity while
greatly reducing runtime sampling in practice.

4. Experiments
In this section we experimentally evaluate the performance
of DPP-VFX compared to exact sampling (Hough et al.,
2006) and MCMC-based approaches (Anari et al., 2016). In
particular, since Section 2 proves that DPP-VFX samples
exactly from the DPP, we are only interested in evaluating
computational performance. This will be characterized by
showing how DPP-VFX and baselines scale with n.

To construct L we downloaded the original MNIST digits
dataset, where n = 7 · 104 and d = 784, and use an RBF
kernel with σ =

√
3d to construct L. All algorithms are

implemented in python. For exact and MCMC sampling
we used the DPPy library (Gautier et al., 2018), while for
DPP-VFX we reimplemented BLESS (Rudi et al., 2018),
and used DPPy to perform exact sampling on the interme-
diate subset. All experiments are carried out on a 24 core
CPU and fully take advantage of potential parallelization.

The Nyström approximation is performed using BLESS,
and, after computing an approximation of RLS and deff(1)
with BLESS, we setm = 2deff(1) ≈ 2k. While this is much
lower than the O(k3) value suggested by the theory, as we
will see it is already accurate enough to result in drastic
runtime improvements over exact and MCMC.

In Figure 1 we report our results for subsets of MNIST that
grow in size. Exact sampling is clearly cubic in n so we
could not push it beyond n = 20,000. For MCMC, we
enforce mixing by runnning the chaing for only nk steps,
as indicated by Anari et al. (2016). However, the runtime is
still at least 10 times slower than DPP-VFX.
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