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Abstract

We introduce a novel use of herding to address
the problem of selecting samples from a large un-
labeled dataset to efficiently evaluate the risk of
a given model. Herding is an algorithm which
elaborately draws samples to approximate the un-
derlying distribution. We use herding to select
the most informative samples and show that the
loss evaluated on k samples produced by herding
converges to the expected loss at a rate O(1/k),
which is much faster than O(1/

√
k) for iid ran-

dom sampling. We validate our analysis on both
synthetic data and real data, and further explore
the empirical performance of herding-based sam-
pling in different cases of high-dimensional data.

1. Introduction
A key component of any machine learning pipeline is per-
formance evaluation. Traditionally, performance is evalu-
ated by comparing the prediction to ground truth on a test
set. For large-scale machine learning, the scale of the test
set also has to grow to achieve high evaluation accuracy
(Bennett & Carvalho, 2010). Thus, manually labeling the
ground truth becomes costly and depends on experts with
domain knowledge. Compared with training, performance
evaluation usually requires less data, while being used more
widely since many users do not train their own model but
only choose from existing ones.

Since in many applications, it is easier to obtain unlabeled
data, it is desirable to find a systematic scheme to choose
the most informative data points to label (Katariya et al.,
2012; Sawade et al., 2010; Welinder et al., 2013). Herding
is a natural candidate for this problem. Given a set X ⊂ Rd,
herding constructs an infinite sequence of samples {x(i)}∞i=1
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from X , such that the mean of a suitable function h(x)
over the first k samples {x(i)}ki=1 converges to the mean of
h(x) over the whole set X with a rate of O(1/k). Herding
motivates the central question of our paper:

Can herding achieve the convergence rate of O(1/k) for
the task of performance evaluation?

This problem has many connections to statistical learning
theory. A central problem in learning theory is to achieve
the optimal sample complexity. That is, given accuracy
level ε, how many labeled samples are required to train/test
a machine learning model? Learning theory has shown that,
for PAC learning, the sample complexity is at least O(1/ε2)
and can be achieved by the popular ERM paradigm within
a logarithm factor. However, in practice, we usually have
some side information which can be used to reduce sample
complexity (Vapnik & Izmailov, 2015). A particularly com-
mon source of side information is unlabeled samples. As
shown in (Golovnev et al., 2019), knowing the distribution
of unlabeled samples provably reduces sample complexity.

Similar settings have been studied in experiment design and
active learning literature, where we have a large pool of
unlabeled samples and pick a small number of them to label
(Angluin, 1988). In experiment design, the statistical model
is assumed to be known and leveraged to design an optimal
criterion (Gevers & Ljung, 1986; Allen-Zhu et al., 2017).
This is usually equal to a combinatorial optimization task
and the solution corresponds to the samples to label. In
active learning setting, the unlabeled data is usually used
to explore either the cluster structure of the samples or
the hypothesis space. This usually involves a complicated
interactive process of query and labeling.

This problem is also related to affine invariant optimization.
An optimization method is called affine invariant if, under
affine transformation of the input data, every new iterate
value remains exactly the transform of the old value, yield-
ing an unchanged convergence rate (Lacoste-Julien & Jaggi,
2013). An affine invariant method is preferred in model eval-
uation since the performance is unaffected by normalization
of the original data.

Can we choose samples to label agnostically and still re-
duce the sample complexity? Generally speaking, this is
impossible according to learning theoretic arguments above.
However, if we assume that the loss function is a determinis-
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tic function of the samples and belongs to some reproducing
kernel Hilbert space (RKHS), then herding can be used to
achieve a fast convergence rate of O(1/k).

1.1. Contribution

• We introduce the use of herding to select test samples
for performance evaluation. We show how herding can
use fewer samples to efficiently evaluate the loss than
uniform random sampling.

• We run several experiments to explore the empirical
performance of herding-based sampling. We validate
our analysis by numerical experiments on both syn-
thetic and real data. We also explored the influence of
dimensionality by doing experiments on several high-
dimensional datasets with low-dimensional structure.
Furthermore, we run experiments to show the affine
invariance problem in herding-based sampling.

2. Herding-based Sampling
2.1. Setting

We first give a more concrete description of our setting.
Let X ,Y be the input and output space, and let F be the
hypothesis space of functions f : X → Y . Suppose we
have n unlabeled data from some underlying distribution p,
the expected risk of any function f ∈ F is defined as

E(f) = Ex∼p[L(f(x), y(x))],

and the empirical risk of f over k selected samples
{x(i)}ki=1 is

Êk(f) =
1

k

∑k

i=1
L(f(x(i)), y(x(i))).

Goal: select k out of k unlabeled sample to label, and use
in test phase to efficiently evaluate the expected risk of the
current model such that

‖E(f)− Êk(f)‖ = O(1/k).

2.2. Problem Formulation

We show how herding can be used to address the sampling
problem. Herding (Chen et al., 2012) is a generic method
for estimating the expectation of function h in some repro-
ducing kernel Hilbert space (RKHS)H with kernel function
K(·, ·). Herding generates samples {x(i)}ki=1 by the follow-
ing iterations:

x(t+1) = argmax
x
〈w(t), φ(x)〉H,

w(t+1) = w(t) + Ex∼pφ(x)− φ(x(t+1)),

where {w(i)}ki=1 is an auxiliary sequence initialized at 0 and
φ(·) is the corresponding feature map of the kernel K(·, ·).

An intriguing property of herding is that for any function
h ∈ H, we have∥∥∥∥1k∑k

i=1
h(x(i))− Ex∼ph(x)

∥∥∥∥ = O(1/k).

In our sampling problem, we consider the case of test phase,
where the learned function f is fixed. We assume the loss
function L(x) = L(f(x), y(x)) is deterministic. This is
true for most large-scale applications, and the random part
cannot be handled by wisely selecting samples to label. We
also assume L(x) ∈ H, then we have∥∥∥∥1k∑k

i=1
L(x(i))− Ex∼pL(x)

∥∥∥∥ = O(1/k).

2.3. Curse of Dimensionality

The argument above show that herding is able to accelerate
the convergence rate to O(1/k). However, the performance
of herding-based sampling becomes drastically worse when
the samples live in a high-dimensional space. This is be-
cause the convergence rate of herding is exponential in
dimensionality d (Amaldi & Hauser, 2005), and the perfor-
mance of herding-based sampling can even be worse than
random sampling when the dimensionality is high enough.
Although another herding method has been proposed to
achieves a better convergence rate ofO(

√
dlog2.5n/k) (Har-

vey & Samadi, 2014), it is not computationally practical
since the running time is at least O(n5d5), where n is the
total number of unlabeled samples and can be very large in
real-world applications.

However, though the input samples usually live in a high-
dimensional space, the underlying distribution p of the sam-
ples may still mainly concentrate on some low-dimensional
structure, for example, a low dimensional manifold. In this
case, herding may still be useful to reduce sample complex-
ity. In the next section, we designed several experiments to
show herding’s empirical performance in this scenario.

3. Experiments
In this section, we run herding and random sampling on
synthetic and real data to compare their performance by
plotting error=

∥∥∥ 1
k

∑k
i=1 L(x

(i))− Ex∼pL(x)
∥∥∥ with re-

spect to sample number k as well as dimensionality d. In
the following experiments, unless otherwise stated, we set
n = 10000, d ∈ [2, 30], k ∈ [1, 100]. The results are aver-
aged over m = 100 independent experiments.

3.1. Synthetic Data

Consider the linear regression model y = βTx, the
corresponding loss function is L(x, y) = (β̂Tx − y)2.
In this experiment, we first generate {x(i)}ni=1 where
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Figure 1. Result of linear
regression on synthetic
data.
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Figure 2. Result of SVM
classification on MNIST
dataset.
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Figure 3. Results of full components.

x
(i)
j ∼ U [0, 1] for all i ∈ [n], j ∈ [d]. Then generate
β ∼ U [0, 1] and calculate y(i) = βTx(i) + ε(i) where
ε(i) = 1/d

∑d
j=1 log(2x(i)j ) is a noisy term. The result

of error w.r.t k when d = 10 is shown in Figure 1.

As shown in Figure 1, the error of sampling by herding is
much smaller than random sampling with the same number
of test samples. Also, the convergence rate of herding is
close to the theoretical O(1/k).

3.2. Real Data

Consider the SVM classification with RBF kernel on
MNIST dataset, the corresponding loss function is the 0-1
loss L(x, y) = 1ŷ(x)6=y. We first train a SVM classifier on
10000 samples from the MNIST training set, and then use
herding to sample k = 100 from n = 3000 samples for
performance evaluation. Since herding is a deterministic
process, we randomly select the n = 3000 samples from the
MNIST test set to get an averaged result shown in Figure 2.

Similar to the results in Figure 1, the error of herding is
smaller than random sampling, but the convergence rate
appears to be a little worse than the theoretical O(1/k).
On the one hand, this is because the 0-1 loss function on
MNIST data is not necessarily a deterministic function in the
RKHSH; on the other hand, the dimensionality of MNIST
dataset is relatively high (784). As shown in the previous
arguments, the convergence rate of herding is exponential
in dimensionality, resulting in the drop in performance in
high-dimensional space.

3.3. Influence of Dimensionality

To further explores the influence of dimensionality, we con-
sider a nonlinear loss function L(x) = ‖x‖/

√
d which is a
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Figure 4. results of partial zero components.
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Figure 5. results of partial compressed components.

little more complex than previous ones. We run several ex-
periments on different distributions of samples and compare
their results.

3.3.1. CASE 1: FULL COMPONENTS

This experiment serves as a baseline to compare with the
results of following experiments. The unlabeled samples
{x(i)}ni=1 are generated the same as the previous section,
that is x(i)j ∼ U [0, 1] for all i ∈ [n], j ∈ [d]. The results of
error w.r.t. k and d are shown in Figure 3.

In the left plot of Figure 3, we see that when d = 30, the
performance of herding is already worse than that of ran-
dom sampling. The right plot better demonstrates the curse
of dimensionality in herding-based sampling, where the er-
ror of herding increases w.r.t. to d while random sampling
decreases.

3.3.2. CASE 2: PARTIAL ZERO COMPONENTS

In this experiment, we set half of the components of x
to be 0. More specifically, we generate {x(i)}ni=1 where
when j ≤ d/2, x

(i)
j ∼ U [0, 1] for all i ∈ [n], and when

j > d/2, x
(i)
j = 0 for all i ∈ [n]. In this case, although the

dimensionality of the samples is high, they actually live on
a subspace with much lower dimensionality. The results are
shown in Figure 4.

From the first plot of Figure 4, herding still outperforms ran-
dom sampling even when d = 30 in this case. Compare the
plots in Figure 3 and Figure 2, we see that herding performs
better in case 2 than case 1 when d is the same. This is quite
straightforward since the sample set with dimensionality d
in case 2 is equivalent to the set with dimensionality bd/2c
in case 1. And the first plot of Figure 3 is actually very
similar to the plot of error w.r.t. k when d = 15 in case 1.
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Figure 6. error w.r.t. α when d = 30, k = 100.

3.3.3. CASE 3: PARTIAL COMPRESSED COMPONENTS

To see the results when the distribution is somewhere be-
tween case 1 and case 2, we consider the distribution
where half of the components of x are compressed to-
wards 0. More specifically, we generate {x(i)}ni=1 where
when j ≤ d/2, x

(i)
j ∼ U [0, 1] for all i ∈ [n], and when

j > d/2, x
(i)
j ∼ U [0, α] for all i ∈ [n]. In this case, the

samples still live on a high-dimensional space, but is dis-
tributed more concentrated in some dimensions while less
on the others. We can think of this samples set as the set
in case 2 being added some noise, i.e. the true underlying
samples still live on a low-dimensional subspace, but the
observed data was polluted by some high-dimensional noise.
The results when α = 0.5 are shown in Figure 5.

The results are quite similar to that of case 2. To further
explore the influence of α, we fix d = 30, k = 100 and let
α varies from 0 to 1. Notice that when α = 1, this case
becomes case 1; when α = 0, this case reduces to case 2.
The plot of error w.r.t. α is shown in Figure 6.

As Figure 6 shows, when α gets larger, the performance
of herding becomes worse, while the performance of ran-
dom sampling remains approximately the same. Also, error
grows relatively slower when α ≤ 0.5 compared to α > 0.5.
This suggests that as long as the magnitude of noise is not
too large compared to the true data, herding can still perform
well even in high-dimensional case.

3.4. Affine Invariance

In this subsection, we show a problem of herding-based
sampling that it is not affine invariant. A common prepro-
cessing of data in machine learning is normalization, that
is applying an affine transformation f(x) = Ax + b on
the original data. We hope sampling on data after affine
transformations still efficiently evaluates the loss. However,
it turns out that the performance of herding-based sampling
can be much worse after affine transformations. In fact,
both shifting and rescaling of the original data may have an
influence on herding’s performance.
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Figure 7. Results of shifted data.
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Figure 8. Results of rescaled data.

In the following experiments, we first generate {x(i)}ni=1

the same as subsection 3.3.1. In the first experiment, we
shift the original data x = x − 0.5 · 1d so that they are
zero mean. In the second experiment, we rescale the data
x̃ = 2

√
3 · x so that they are unit variance. We perform

herding on the shifted and rescaled data respectively, and
the results are shown in Figure 7 and 8.

Compare the results in Figure 7, 8 with Figure 3, we can
see that the performance of herding-based sampling is much
worse after both shifting and rescaling. Although there is
some work (Lacoste-Julien & Jaggi, 2013) on the affine
invariance of herding’s equivalent algorithm conditional gra-
dient algorithms (Bach et al., 2012), it cannot be extended
to herding since the corresponding affine invariance is in the
feature space instead of input space of herding.

4. Discussion
Herding-based sampling accelerates the convergence rate
of empirical loss over k selected samples from O(1/

√
k)

to O(1/k), making the performance evaluation of machine
learning models more efficient. Experiments on simulated
data show that though herding-based sampling suffers from
the curse of dimensionality, it still works well on high-
dimensional datasets with low-dimensional structure. How-
ever, herding-based sampling is not affine invariant, which
may cause a drop of performance when data are normalized.

The empirical performance of herding-based sampling leads
to questions that can be further studied, that is to propose
herding-style sampling algorithms which are more robust
to dimensionality and affine transformation. In addition,
theoretical analysis of herding on high-dimensional data
with low-dimensional structure can also be further explored.
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